15.若集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},當(dāng)B∪A=A時(shí),則實(shí)數(shù)m的取值范圍是m≥-1.

分析 由B∪A=A,得B⊆A,分B=∅和B≠∅分布討論.

解答 解:∵A={x|-3≤x≤4},B={x|2m-1≤x≤m+1},
又B∪A=A,
∴B⊆A,
∴(1)B=∅時(shí),2m-1>m+1,解得:m>2,
(2)當(dāng)B≠∅時(shí),$\left\{\begin{array}{l}{2m-1≤m+1}\\{2m-1≥-3}\\{m+1≤4}\end{array}\right.$,
解得:-1≤m≤2,
綜上:m≥-1
故答案為:m≥-1

點(diǎn)評(píng) 本題主要考查集合的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知命題$p:x≠\frac{π}{6}+2kπ,k∈Z$;命題$q:sinx≠\frac{1}{2}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知冪函數(shù)f(x)的圖象過點(diǎn)$(3,\frac{1}{9})$,則f(2)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=ax-1(a>0,且a≠1),當(dāng)x∈(0,+∞)時(shí),f(x)>0,且函數(shù)g(x)=f(x+1)-4的圖象不過第二象限,則a的取值范圍是(  )
A.(1,+∞)B.$(\frac{1}{2},1)$C.(1,3]D.(1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A=[a-3,a],函數(shù)$f(x)={(\frac{3}{2})^{{x^2}-4x}}$(-2≤x≤5)的單調(diào)減區(qū)間為集合B.
(1)若a=0,求(∁RA)∪(∁RB);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)$f(x)=\frac{1}{3}{x^3}-x+m$的極大值為1,則函數(shù)f(x)的極小值為(  )
A.$-\frac{1}{3}$B.-1C.$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義在R上的偶函數(shù),若方程f(x+1)=|x2+2x-3|的實(shí)根分別為x1,x2,…,xn,則x1+x2+…+xn=( 。
A.nB.-nC.-2nD.-3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知f(x)=2|x+1|-|x-1|.
(1)畫出函數(shù)f(x)的圖象;
(2)解不等式|f(x)|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定積分${∫}_{0}^{1}$2e2xdx=e2-1.

查看答案和解析>>

同步練習(xí)冊答案