已知函數(shù)f(x)對(duì)任意的實(shí)數(shù)x、y,都有f(x+y)=f(x)+2y(x+y),且f(1)=1,求f(x)的解析式

答案:
解析:

  ∵f(x+y)=f(x)+2y(x+y)對(duì)任意x、y∈R都成立,可令x=0,y=1得:f(1)=f(0)+2×1×(0+1),又f(1)=1,解得f(0)=-1,

  再令x=0,y=x,得f(x)=f(0)+2x(0+x)=-1+2x2,即f(x)=2x2-1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
(1)若x2-1比3接近0,求x的取值范圍;
(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
ab
;
(3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市海淀區(qū)2012屆高三下學(xué)期期中練習(xí)數(shù)學(xué)文科試題 題型:022

已知函數(shù)f(x)=則f(f(x))=________;

下面三個(gè)命題中,所有真命題的序號(hào)是________.

①函數(shù)f(x)是偶函數(shù);

②任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)x∈R恒成立;

③存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(上海卷) 題型:044

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.

(1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;

(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab

(3)已知函數(shù)f(x)的定義域.任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年全國普通高等學(xué)校招生統(tǒng)一考試、文科數(shù)學(xué)(上海卷) 題型:044

若實(shí)數(shù)x、ym滿足|xm|<|ym|,則稱xy接近m

(1)若x21比3接近0,求x的取值范圍;

(2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2a3b3接近2ab;

(3)已知函數(shù)f(x)的定義域D={x|xk∈Z,x∈R}.任取x∈Df(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海高考真題 題型:解答題

若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m,
(Ⅰ)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
(Ⅱ)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab;
(Ⅲ)已知函數(shù)f(x)的定義域D={x|x≠,k∈Z,x∈R},任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案