如圖,在四棱錐PABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)已知二面角APBD的余弦值為,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.
(1)見(jiàn)解析 (2)
【解析】解:(1)證明:∵PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC,
∵四邊形ABCD是菱形,∴BD⊥AC,
又BD∩PD=D,∴AC⊥平面PBD,
∵DE⊂平面PBD,∴AC⊥DE.
(2)在△PDB中,EO∥PD,∴EO⊥平面ABCD,分別以O(shè)A,OB,OE所在直線(xiàn)為x軸,y軸,z軸建立空間直角坐標(biāo)系,
設(shè)PD=t,則A(1,0,0),B(0,,0),C(-1,0,0),E,P(0,-,t),=(-1,,0),=(-1,-,t).
由(1)知,平面PBD的一個(gè)法向量為n1=(1,0,0),設(shè)平面PAB的法向量為n2=(x,y,z),則根據(jù)
得令y=1,得平面PAB的一個(gè)法向量為n2=.
∵二面角APBD的余弦值為,
則|cos〈n1,n2〉|=,
即=,
解得t=2或t=-2 (舍去),
∴P(0,-,2).
設(shè)EC與平面PAB所成的角為θ,
∵=(-1,0,-),n2=(,1,1),
則sin θ=|cos〈,n2〉|==,
∴EC與平面PAB所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年臨沂市質(zhì)檢一文) (12分)如圖,在四棱錐S―ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn)。
(1)求證:AC⊥SBD;
(2)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省杭州市高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿(mǎn)分10分)如圖,在四棱錐S—ABCD中,側(cè)棱SA=SB=SC=SD,底面ABCD是菱形,AC與BD交于O點(diǎn).
(Ⅰ)求證:AC⊥平面SBD;
(Ⅱ)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:河南省會(huì)考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:AC⊥平面SBD;
(2)若E為BC中點(diǎn),點(diǎn)P在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動(dòng),并保持PE⊥AC,試指出動(dòng)點(diǎn)P的軌跡,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com