設(shè)函數(shù)f(x)=2sin(2x+?)+1(-π<?<0),y=f(x)的圖象的一條對(duì)稱軸是直線x=
π
8
.

(1)求?;
(2)求函數(shù)y=f(x)的遞減區(qū)間;
(3)試說(shuō)明y=f(x)的圖象可由y=2sin2x的圖象作怎樣變換得到.
(1)由題意知,函數(shù)圖象的一條對(duì)稱軸是x=
π
8
.
,
sin(2×
π
8
+?)=±1
,即sin(
π
4
+?)=±1

解得,?+
π
4
=kπ+
π
2
,k∈Z
,則?=kπ+
π
4
(k∈Z)

-π<kπ+
π
4
<0
,解得-
5
4
<k<-
1
4

∴k=-1,即?=-
4
(5分)
(2)∵f(x)=2sin(2x-
4
)+1
且y=2x是增函數(shù),
∴函數(shù)y=f(x)的遞減區(qū)間,即為y=sin(2x-
4
)+1
的遞減區(qū)間.
2kπ+
π
2
<2x-
4
<2kπ+
2
,k∈z
解得:kπ+
8
<x<kπ+
8

∴函數(shù)y=f(x)的遞減區(qū)間為[kπ+
8
,kπ+
8
](k∈Z)
(10分)
(3)∵f(x)=2sin(2x-
4
)+1
=2.2sin[2(x-
8
)]

∴將函數(shù)y=2sin2x的圖象向右平移
8
個(gè)單位,然后縱坐標(biāo)擴(kuò)大為2倍(橫坐標(biāo)不變)
得到函數(shù)y=f(x)的圖象(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分13分)已知函數(shù)f (x)=2n在[0,+上最小值是an∈N*).

(1)求數(shù)列{a}的通項(xiàng)公式;(2)已知數(shù)列{b}中,對(duì)任意n∈N*都有ba =1成立,設(shè)S為數(shù)列{b}的前n項(xiàng)和,證明:2S<1;(3)在點(diǎn)列A(2n,a)中是否存在兩點(diǎn)A,A(i,j∈N*),使直線AA的斜率為1?若存在,求出所有的數(shù)對(duì)(i,j);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案