分析:本題屬于線(xiàn)性規(guī)劃中的延伸題,對(duì)于可行域不要求線(xiàn)性目標(biāo)函數(shù)的最值,而是求可行域內(nèi)的點(diǎn)與原點(diǎn)(0,0)構(gòu)成的線(xiàn)段的長(zhǎng)度問(wèn)題.
解答:解:先根據(jù)約束條件畫(huà)出可行域,
z=x
2+y
2,
表示可行域內(nèi)點(diǎn)到原點(diǎn)距離OP的平方,
當(dāng)P在點(diǎn)A時(shí),z最小,最小值為1
2+0
2=1,
故答案為:1.
點(diǎn)評(píng):本題利用直線(xiàn)斜率的幾何意義,求可行域中的點(diǎn)與原點(diǎn)的斜率.本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問(wèn)題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線(xiàn)性的與非線(xiàn)性,非線(xiàn)性問(wèn)題的介入是線(xiàn)性規(guī)劃問(wèn)題的拓展與延伸,使得規(guī)劃問(wèn)題得以深化.