已知橢圓的左、右焦點分別為F1、F2,短軸端點分別為A、B,且四邊形F1AF2B是邊長為2的正方形

 (I)求橢圓的方程;

 (II)若C、D分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM交橢圓于P,證明為定值(O為坐標原點);K^S*5U.C#O%

 (III)在(II)的條件下,試問在x軸上是否存在異于點C的定點Q,使以線段MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出Q的坐標,若不存在,說明理由

 

 

 

 

 

 

 

【答案】

【解析】

(1)如圖,由題知,……3分

(2)C(-2,0),D(2,0),

則可設(shè)…5分

                         

 

 

 

 

 

 …………9分

   (3)設(shè),由題知成立

使得以MP為直徑的圓恒過DP、MQ的交點  ………………13分

 

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的左、右焦點分別為F1,F(xiàn)2,橢圓的離心率為
1
2
且經(jīng)過點P(1,
3
2
)
.M為橢圓上的動點,以M為圓心,MF2為半徑作圓M.
(1)求橢圓C的標準方程;
(2)若圓M與y軸有兩個交點,求點M橫坐標的取值范圍;
(3)是否存在定圓N,使得圓N與圓M相切?若存在.求出圓N的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的左、右焦點分別為,其右準線上上存在點(點 軸上方),使為等腰三角形.

⑴求離心率的范圍;

    ⑵若橢圓上的點到兩焦點的距離之和為,求的內(nèi)切圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測考試理科數(shù)學試卷 題型:解答題

已知橢圓的左、右焦點分別為, 點是橢圓的一個頂點,△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點分別作直線,交橢圓于兩點,設(shè)兩直線的斜率分別為,,且,證明:直線過定點().

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省三明市高三上學期三校聯(lián)考數(shù)學理卷 題型:解答題

(本題滿分14分)     已知橢圓的左、右焦點分別為F1、F2,其中

F2也是拋物線的焦點,M是C1與C2在第一象限的交點,且  

(I)求橢圓C1的方程;   (II)已知菱形ABCD的頂點A、C在橢圓C1上,頂點B、D在直線上,求直線AC的方程。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年云南省德宏州高三高考復(fù)習數(shù)學試卷 題型:解答題

(本小題滿分12分)

已知橢圓的左、右焦點分別為、,離心率,右準線方程為

(I)求橢圓的標準方程;

(II)過點的直線與該橢圓交于M、N兩點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案