已知點(diǎn)P(x,y)在直線2x+y+5=0上,那么x2+y2的最小值為( 。
A、
5
B、2
5
C、5
D、2
10
考點(diǎn):點(diǎn)到直線的距離公式
專(zhuān)題:直線與圓
分析:x2+y2的最小值可看成直線2x+y+5=0上的點(diǎn)與原點(diǎn)連線長(zhǎng)度的平方最小值,由點(diǎn)到直線的距離公式可得.
解答: 解:x2+y2的最小值可看成直線2x+y+5=0上的點(diǎn)與原點(diǎn)連線長(zhǎng)度的平方最小值,
即為原點(diǎn)到該直線的距離平方d2,
由點(diǎn)到直線的距離公式易得d=
|2×0+0+5|
22+12
=
5

∴x2+y2的最小值為5,
故選:C
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式,轉(zhuǎn)化是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是某程序框圖,若執(zhí)行后輸出y的值為0,則輸入x的值不能是( 。
A、0
B、
3
2
C、2
D、2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“?x∈R,x2+x+3>0”的否定是(  )
A、?x∈R,x2+x+3≤0
B、?x∈R,x2+x+3<0
C、?x∈R,x2+x+3≤0
D、?x∈R,x2+x+3<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的框圖的功能是計(jì)算表達(dá)式1+2+3+…+10的值,則在①、②兩處應(yīng)填入( 。
A、i=0,i≤10
B、i=0,i<10
C、i=1,i≤10
D、i=1,i<10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)據(jù)x1,x2,x3的中位數(shù)為k,眾數(shù)為m,平均數(shù)為n,方差為p,則下列說(shuō)法中,錯(cuò)誤的是( 。
A、數(shù)據(jù)2x1,2x2,2x3的中位數(shù)為2k
B、數(shù)據(jù)2x1,2x2,2x3的眾數(shù)為2m
C、數(shù)據(jù)2x1,2x2,2x3的平均數(shù)為2n
D、數(shù)據(jù)2x1,2x2,2x3的方差為2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在矩形紙片ABCD中,AB=6,AD=4
3
,將矩形紙片的右下角折起,使該角的頂點(diǎn)B落在矩形的邊AD上,且折痕MN的兩端點(diǎn)M、N分別位于邊AB、BC上,記sin∠MNB=x,線段MN的長(zhǎng)度為F(x),則函數(shù)y=F(x)的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=tanx-
1
x
在區(qū)間(-
π
2
,
π
2
)內(nèi)的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校在一天的6節(jié)課中隨機(jī)安排語(yǔ)文、數(shù)學(xué)、英語(yǔ)三門(mén)文化課和音樂(lè)、體育、美術(shù)三種藝術(shù)課各一節(jié),則在課表上的相鄰2節(jié)文化課之間至少間接一節(jié)藝術(shù)課的概率為( 。
A、
1
10
B、
1
5
C、
4
27
D、
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三人打算趁目前股市低迷之際“入市”.若三人在圈定的10支股票中各自隨機(jī)購(gòu)買(mǎi)一支(假定購(gòu)買(mǎi)時(shí)每支股票的基本情況完全相同).
(1)求甲、乙、丙三人恰好買(mǎi)到同一支股票的概率;
(2)求甲、乙、丙三人中至少有兩人買(mǎi)到同一支股票的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案