(文)平面上三條直線x+2y-1=0,x+1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實(shí)數(shù)k的所有取值為_(kāi)_____.(將你認(rèn)為所有正確的序號(hào)都填上)
①0       ②
1
2
     ③1        ④2      ⑤3.
因?yàn)檫@三條直線將平面劃分為六部分,
所以這三條直線兩兩相交,且交于同一點(diǎn),或者直線x+ky=0與其中一條直線平行,
當(dāng)這三條直線兩兩相交,且交于同一點(diǎn),有
x+1=0
x+2y-1=0
,得
x=-1
y=1
,代入直線x+ky=0得k=1.
當(dāng)直線x+ky=0與其中一條直線平行時(shí),當(dāng)x+ky=0與直線x+1=0平行時(shí),此時(shí)k=0成立.
當(dāng)當(dāng)x+ky=0與直線x+2y-1=0平行時(shí),此時(shí)k=2成立.
∴k的取值范圍為 {k|k=2或k=0或k=1},
故答案為:①③④.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)(文)平面上三條直線x+2y-1=0,x+1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實(shí)數(shù)k的所有取值為
①③④
①③④
.(將你認(rèn)為所有正確的序號(hào)都填上)
①0       ②
12
     ③1        ④2      ⑤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

(文)平面上三條直線x+2y-1=0,x+1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實(shí)數(shù)k的所有取值為_(kāi)_______.(將你認(rèn)為所有正確的序號(hào)都填上)
①0    ②數(shù)學(xué)公式   ③1    ④2  、3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省黃石市大冶市華中學(xué)校高三數(shù)學(xué)滾動(dòng)訓(xùn)練(二)(解析版) 題型:填空題

(文)平面上三條直線x+2y-1=0,x+1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實(shí)數(shù)k的所有取值為    .(將你認(rèn)為所有正確的序號(hào)都填上)
①0       ②     ③1        ④2      ⑤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖南八校高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(文)平面上三條直線x+2y-1=0,x+1=0,x+ky=0,如果這三條直線將平面劃分為六部分,則實(shí)數(shù)k的所有取值為    .(將你認(rèn)為所有正確的序號(hào)都填上)
①0       ②     ③1        ④2      ⑤3.

查看答案和解析>>

同步練習(xí)冊(cè)答案