在極坐標(biāo)系內(nèi),已知曲線(xiàn)的方程為,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/f2/9/tmben.png" style="vertical-align:middle;" />正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線(xiàn)的參數(shù)方程為(為參數(shù)).
(1)求曲線(xiàn)的直角坐標(biāo)方程以及曲線(xiàn)的普通方程;
(2)設(shè)點(diǎn)為曲線(xiàn)上的動(dòng)點(diǎn),過(guò)點(diǎn)作曲線(xiàn)的兩條切線(xiàn),求這兩條切線(xiàn)所成角余弦值的取值范圍.
(1) , (2)
解析試題分析:解:(1) 對(duì)于曲線(xiàn)的方程為,
可化為直角坐標(biāo)方程,即;
對(duì)于曲線(xiàn)的參數(shù)方程為(為參數(shù)),
可化為普通方程.
(2) 過(guò)圓心點(diǎn)作直線(xiàn)的垂線(xiàn),此時(shí)兩切線(xiàn)成角最大,即余弦值最小. 則由點(diǎn)到直線(xiàn)的距離公式可知,
,則,因此,
因此兩條切線(xiàn)所成角的余弦值的取值范圍是.
考點(diǎn):參數(shù)方程;極坐標(biāo)方程
點(diǎn)評(píng):解決關(guān)于參數(shù)方程的問(wèn)題,需將問(wèn)題轉(zhuǎn)化為直角坐標(biāo)系中的問(wèn)題,轉(zhuǎn)化只需消去參數(shù),需要注意的是,要結(jié)合參數(shù)去得到x和y的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的右焦點(diǎn)在圓上,直線(xiàn)交橢圓于、兩點(diǎn).
(1)求橢圓的方程;
(2)若(為坐標(biāo)原點(diǎn)),求的值;
(3)設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(與不重合),且直線(xiàn)與軸交于點(diǎn),試問(wèn)的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中心在原點(diǎn)的雙曲線(xiàn)C的右焦點(diǎn)為(2,0),右頂點(diǎn)為
(1)求雙曲線(xiàn)C的方程;
(2)若直線(xiàn)與雙曲線(xiàn)C恒有兩個(gè)不同的交點(diǎn)A和B,且(其中O為原點(diǎn)). 求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)圓的極坐標(biāo)方程為,以極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸正半軸,兩坐標(biāo)系長(zhǎng)度單位一致,建立平面直角坐標(biāo)系.過(guò)圓上的一點(diǎn)作平行于軸的直線(xiàn),設(shè)與軸交于點(diǎn),向量.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)設(shè)點(diǎn) ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線(xiàn)的焦點(diǎn)在拋物線(xiàn)上.
(1)求拋物線(xiàn)的方程及其準(zhǔn)線(xiàn)方程;
(2)過(guò)拋物線(xiàn)上的動(dòng)點(diǎn)作拋物線(xiàn)的兩條切線(xiàn)、, 切點(diǎn)為、.若、的斜率乘積為,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:的離心率為,且經(jīng)過(guò)點(diǎn).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)斜率為1的直線(xiàn)l與橢圓C相交于,兩點(diǎn),連接MA,MB并延長(zhǎng)交直線(xiàn)x=4于P,Q兩點(diǎn),設(shè)yP,yQ分別為點(diǎn)P,Q的縱坐標(biāo),且.求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,直線(xiàn)l為圓的一條切線(xiàn),且經(jīng)過(guò)橢圓C的右焦點(diǎn),直線(xiàn)l的傾斜角為,記橢圓C的離心率為e.
(1)求e的值;
(2)試判定原點(diǎn)關(guān)于l的對(duì)稱(chēng)點(diǎn)是否在橢圓上,并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的長(zhǎng)軸長(zhǎng)為,離心率為,分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn),且與直線(xiàn)相切.
(1)求橢圓及動(dòng)圓圓心軌跡的方程;
(2) 在曲線(xiàn)上有兩點(diǎn)、,橢圓上有兩點(diǎn)、,滿(mǎn)足與共線(xiàn),與共線(xiàn),且,求四邊形面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com