【題目】已知圓O:x2+y2=1過(guò)橢圓C: (a>b>0)的短軸端點(diǎn),P,Q分別是圓O與橢圓C上任意兩點(diǎn),且線段PQ長(zhǎng)度的最大值為3. (Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)(0,t)作圓O的一條切線交橢圓C于M,N兩點(diǎn),求△OMN的面積的最大值.
【答案】:(Ⅰ)∵圓O過(guò)橢圓C的短軸端點(diǎn),∴b=1, 又∵線段PQ長(zhǎng)度的最大值為3,
∴a+1=3,即a=2,
∴橢圓C的標(biāo)準(zhǔn)方程為 .
(Ⅱ)由題意可設(shè)切線MN的方程為y=kx+t,即kx﹣y+t=0,則 ,得k2=t2﹣1.①
聯(lián)立得方程組 ,消去y整理得(k2+4)x2+2ktx+t2﹣4=0.
其中△=(2kt)2﹣4(k2+4)(t2﹣4)=﹣16t2+16k2+64=48>0,
設(shè)M(x1 , y1),N(x2 , y2),則 , ,
則 .②
將①代入②得 ,∴ ,
而 ,等號(hào)成立當(dāng)且僅當(dāng) ,即 .
綜上可知:(S△OMN)max=1
【解析】(Ⅰ)由圓O過(guò)橢圓C的短軸端點(diǎn)b=1,線段PQ長(zhǎng)度的最大值為3,a+1=3,a=2,即可求得橢圓方程;(Ⅱ)設(shè)直線MN的方程,由點(diǎn)到直線的距離公式,求得k2=t2﹣1,代入橢圓方程,由韋達(dá)定理及弦長(zhǎng)公式求得丨MN丨,利用三角形的面積公式及基本不等式的性質(zhì),即可求得△OMN的面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) 為定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷函數(shù)f(x)在區(qū)間(a+1,+∞)上的單調(diào)性,并用定義法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin+cos , x∈R.
(1)求函數(shù)f(x)的最小正周期,并求函數(shù)f(x)在x∈[﹣2π,2π]上的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的平移和伸縮變換可以得到函數(shù)f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問(wèn)x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋著名數(shù)學(xué)家秦九韶發(fā)現(xiàn)了從三角形三邊求三角形面積的“三斜公式”,設(shè)△ABC三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,面積為S,則“三斜求積”公式為 .若a2sinC=4sinA,(a+c)2=12+b2 , 則用“三斜求積”公式求得△ABC的面積為( )
A.
B.2
C.3
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項(xiàng)式anxn+an﹣1xn﹣1+…+a1x+a0 , 當(dāng)x=x0時(shí)的值的一種簡(jiǎn)捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項(xiàng)式改寫為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進(jìn)行求值.運(yùn)行如圖所示的程序框圖,能求得多項(xiàng)式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)函數(shù)f(x),如果存在x0≠0使得f(x0)=﹣f(﹣x0),則稱(x0 , f(x0))與(﹣x0 , f(﹣x0))為函數(shù)圖象的一組奇對(duì)稱點(diǎn).若f(x)=ex﹣a(e為自然數(shù)的底數(shù))存在奇對(duì)稱點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,1)
B.(1,+∞)
C.(e,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=|x+ |+|x﹣a|(a>0).
(1)證明:f(x)≥2;
(2)若f(3)<5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間直角坐標(biāo)系中,已知A(3,0,1)和B(1,0,-3),試問(wèn)
(1)在y軸上是否存在點(diǎn)M,滿足 ?
(2)在y軸上是否存在點(diǎn)M,使△MAB為等邊三角形?若存在,試求出點(diǎn)M坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com