(1)化簡(jiǎn)f(α)=
sin(
π
2
-α)+sin(-π-α)
3cos(2π+α)+cos(
2
-α)
;
(2)若tanα=2,求f(α)的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:(1)由條件,利用誘導(dǎo)公式化簡(jiǎn)所給的式子,可得結(jié)果.
(2)由條件,利用同角三角函數(shù)的基本關(guān)系化簡(jiǎn)所給的式子,可得結(jié)果.
解答: 解:(1)由題意可得 f(α)=
sin(
π
2
-α)+sin(-π-α)
3cos(2π+α)+cos(
2
-α)
=
cosα+sin(π-α)
3cosα-sinα
=
cosα+sinα
3cosα-sinα

(2)∵tanα=2,
∴f(α)═
cosα+sinα
3cosα-sinα
=
1+tanα
3-tanα
=
1+2
3-2
=3.
點(diǎn)評(píng):本題主要考查利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系進(jìn)行化簡(jiǎn)求值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下命題:
①如果向量
a
,
b
與任何向量不能構(gòu)成空間的一個(gè)基底,那么
a
,
b
的關(guān)系是不共線(xiàn);
②O,A,B,C為空間四點(diǎn),且向量
OA
OB
,
OC
不構(gòu)成空間的一個(gè)基底,那么點(diǎn)O,A,B,C一定共面;
③若向量
p
空間的一個(gè)單位正交基底
a
,
b
,
c
下的坐標(biāo)為(1,2,3),那么向量
p
在基底
a
+
b
a
-
b
,
c
下的坐標(biāo)為(
3
2
,-
1
2
,3).
④若A,B,C三點(diǎn)不共線(xiàn),O是平面ABC外一點(diǎn),
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
,則點(diǎn)M一定在平面ABC上,且在△ABC的內(nèi)部.
其中正確的命題是(  )
A、①②B、①③④
C、②③④D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C1
x2
a2
+
y2
b2
=1的一個(gè)頂點(diǎn)坐標(biāo)為A(
2
,0),且拋物線(xiàn)y=
1
4
x2的焦點(diǎn)是橢圓C1的另一個(gè)頂點(diǎn).
(l)求橢圓C1的方程;
(2)①若直線(xiàn)l:y=kx+m同時(shí)與橢圓C1和曲線(xiàn)C2:x2+y2=
4
3
相切,求直線(xiàn)l的方程.
②若直線(xiàn)l:y=kx+m與橢圓C1交于M,N,且直線(xiàn)OM的斜率是kOM與直線(xiàn)ON的斜率kON滿(mǎn)足kOM+kON=4k(k≠0),求證:m2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)對(duì)高二甲、乙兩個(gè)同類(lèi)班級(jí)進(jìn)行加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練對(duì)提高數(shù)學(xué)應(yīng)用題得分率作用的試驗(yàn),其中甲班為實(shí)驗(yàn)班(常規(guī)教學(xué),無(wú)額外訓(xùn)練),在試驗(yàn)前的測(cè)試中,甲、乙兩班學(xué)生在數(shù)學(xué)應(yīng)用題上的得分率基本一致,試驗(yàn)結(jié)束后,統(tǒng)計(jì)幾次數(shù)學(xué)應(yīng)用試題測(cè)試的平均成績(jī)(均取整數(shù))如表所示:
60分以下61-70分71-80分81-90分91-100分
甲班(人數(shù))36111812
乙班(人數(shù))39131510
現(xiàn)規(guī)定平均成績(jī)?cè)?0分以上(不含80分)的為優(yōu)秀.
(1)試分析估計(jì)兩個(gè)班級(jí)的優(yōu)秀率;
(2)由以上統(tǒng)計(jì)列出2×2列聯(lián)表.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓M:
x2
a2
+
y2
3
=1(a>0)的一個(gè)焦點(diǎn)為F(-1,0),左右頂點(diǎn)分別為A,B.經(jīng)過(guò)點(diǎn)F的直線(xiàn)l與橢圓M交于C,D兩點(diǎn).
(Ⅰ)求橢圓方程;
(Ⅱ)若直線(xiàn)l的斜率為
1
2
,求橢圓上到l的距離為
3
5
5
的點(diǎn)的個(gè)數(shù);
(Ⅲ)記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,以
a2+b2
為半徑的圓O為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的“準(zhǔn)圓”.已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
3
,直線(xiàn)l:2x-y+5=0與橢圓C的“準(zhǔn)圓”相切.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過(guò)動(dòng)點(diǎn)P作斜率存在且不為0的兩條不同的直線(xiàn)l1,l2,使得l1,l2與橢圓都相切,試判斷l(xiāng)1與l2是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
y2
a2
+
x2
b2
=1(a>b>0)的離心率為
6
3
,F(xiàn)為橢圓在x軸正半軸上的焦點(diǎn),M、N兩點(diǎn)在橢圓C上,且
MF
FN
(λ>0),定點(diǎn)A(-4,0).
(Ⅰ)求證:當(dāng)λ=1時(shí)
MN
AF
;
(Ⅱ)若當(dāng)λ=1時(shí)有
AM
AN
=
106
3
,求橢圓C的方程;
(Ⅲ)在(Ⅱ)的橢圓中,當(dāng)M、N兩點(diǎn)在橢圓C上運(yùn)動(dòng)時(shí),試判斷
AM
AN
×tan∠MAN是否有最大值,若存在,求出最大值,并求出這時(shí)M、N兩點(diǎn)所在直線(xiàn)方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知角α的終邊在第二象限,且與單位圓交于點(diǎn)P(m,
15
4
).
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)求
sin(α+
π
4
)
sin(π+2α)-sin(
2
-2α)+1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠(chǎng)生產(chǎn)新產(chǎn)品需一種新零件,可外購(gòu)也可自產(chǎn),如果外購(gòu)每個(gè)價(jià)格為1.10元,如果自產(chǎn)固定成本將增加800元,并且生產(chǎn)這種零件的每個(gè)材料費(fèi)和勞力費(fèi)等支出合計(jì)0.06元,試決定該廠(chǎng)自產(chǎn)還是外購(gòu)這種零件?

查看答案和解析>>

同步練習(xí)冊(cè)答案