把一個(gè)體積為125,表面涂有紅色的正方形木塊鋸成125個(gè)體積為1的小正方體.從中任取一塊,則這塊小正方體至少有一面涂有紅色的概率為
 
考點(diǎn):古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:先弄清至少有一面涂紅漆的小正方體個(gè)數(shù)以及沒(méi)有顏色的小正方體的個(gè)數(shù),從中任取兩塊,分為有兩塊至少有一面上涂有紅漆與有一塊至少有一面上涂有紅漆兩種情形,最后根據(jù)古典概型及其概率計(jì)算公式解之即可.
解答: 解:把一個(gè)體積為125,表面涂有紅色的正方形木塊鋸成125個(gè)體積為1的小正方體.
:∵至少有一面涂紅漆的小正方體有53-33=98個(gè),
∴從中任取一塊,至少有一面上涂有紅漆的概率P=
98
125
,
故答案為:
98
125
點(diǎn)評(píng):本題主要考查了古典概型及其概率計(jì)算公式,解題的關(guān)鍵是求至少有一面涂紅漆的小正方體的個(gè)數(shù),同時(shí)考查了運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2x2-6x+a+6)•ex(e為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)f(x)在(0,+∞)上的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=f(x)+(2x-a-4)•ex,是否存在區(qū)間[m,n]⊆(1,+∞),使得當(dāng)x∈[m,n]時(shí)函數(shù)g(x)的值域?yàn)閇2m,2n],若存在求出m,n,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)r=f(p)的圖象如圖所示,其右側(cè)部分向直線x=6無(wú)限接近,但永不相交.

(1)函數(shù)r=f(p)的定義域?yàn)?div id="rnfff9j" class='quizPutTag' contenteditable='true'> 
,值域?yàn)?div id="xddvlzf" class='quizPutTag' contenteditable='true'> 

(2)當(dāng)r∈
 
時(shí),只有唯一的p值與之對(duì)應(yīng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,-1),
b
=(3,1),則
a
-2
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={-1,0,1},對(duì)于數(shù)列{an}中ai∈A(i=1,2,3,…,n).
(Ⅰ)若三項(xiàng)數(shù)列{an}滿足a1+a2+a3=0,則這樣的數(shù)列{an}有多少個(gè)?
(Ⅱ)若各項(xiàng)非零數(shù)列{an}和新數(shù)列{bn}滿足首項(xiàng)b1=0,bi-bi-1=ai-1(i=2,3,…,n),且末項(xiàng)bn=0,記數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z1=4+29i,z2=6+i,其中i是虛數(shù)單位,則復(fù)數(shù)(z1-z2)i的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a-2i=bi+1(a、b∈R),復(fù)數(shù)z=b+ai,則z
.
z
=
 
.(i為虛數(shù)單位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)平面區(qū)域D是由雙曲線y2-
x2
4
=1的兩條漸近線和拋物線y2=-8x的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn)(x,y)∈D,則目標(biāo)函數(shù)z=x+y的最大值與最小值之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心坐標(biāo)為(0,1),且與直線2x-y-4=0相切,則圓C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案