已知曲線(xiàn)y=x3+4
(1)求曲線(xiàn)在P(2,12)處的切線(xiàn)方程;
(2)求曲線(xiàn)過(guò)點(diǎn)P(2,4)的切線(xiàn)方程;
(3)求斜率為1的切線(xiàn)方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)切線(xiàn)方程
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用,直線(xiàn)與圓
分析:(1)求出導(dǎo)數(shù),求得切線(xiàn)的斜率,由點(diǎn)斜式方程即可得到切線(xiàn)方程;
(2)設(shè)切點(diǎn),求出切線(xiàn)的斜率,得到切線(xiàn)的方程,代入點(diǎn)(2,4),再由切點(diǎn)在曲線(xiàn)上,解方程可得切點(diǎn),進(jìn)而得到切線(xiàn)方程;
(3)設(shè)切點(diǎn),求得切線(xiàn)的斜率,令它為1,解方程可得切點(diǎn),進(jìn)而得到切線(xiàn)方程.
解答: 解:(1)y=x3+4的導(dǎo)數(shù)為y′=3x2,
則在P(2,12)處的切線(xiàn)斜率為3×4=12,
即有曲線(xiàn)在P(2,12)處的切線(xiàn)方程為y-12=12(x-2),
即為12x-y-12=0;
(2)設(shè)切點(diǎn)為(m,n),則過(guò)點(diǎn)P(2,4)的切線(xiàn)斜率為3m2
即有切線(xiàn)方程為y-n=3m2(x-m),
代入(2,4)可得4-n=3m2(2-m),
又n=m3+4,
解得m=0,n=4或m=3,n=31.
即有切線(xiàn)方程為y-4=0或27x-y-50=0;
(3)設(shè)切點(diǎn)為(s,t),則切線(xiàn)的斜率為3s2=1,
即有s=±
3
3
,
則切點(diǎn)為(
3
3
,4+
3
9
),或(-
3
3
,4-
3
9
).
則斜率為1的切線(xiàn)方程為x-y+4-
2
3
9
=0或x-y+4+
2
3
9
=0.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線(xiàn)在該點(diǎn)處的切線(xiàn)的斜率,注意區(qū)別在某點(diǎn)處和過(guò)點(diǎn)的切線(xiàn),屬于易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AA1=AB=2,AD=1,E,F(xiàn),G分別是DD1,AB,CC1的中點(diǎn),則異面直線(xiàn)A1E與GF所成角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)定義域.
(1)y=(1+sinx)2;
(2)y=ln
x2+1
;
(3)y=xe1-cosx
(4)y=
1
(1-3x)4
;
(5)y=x
1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1中,AA1=2AB=2AD,G為CC1中點(diǎn),則直線(xiàn)A1C1與BG所成角的大小是(  )
A、30°B、45°
C、60°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三角形ABC中,a,b,c分別是角A,B,C的對(duì)邊,2a=b+c,且sin2A=sinBcosC,判斷三角形形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若na=2,log3b=
1
e
,c3=
1
9
(其中e為自然對(duì)數(shù)的底數(shù)),則a、b、c的大小關(guān)系正確的是(  )
A、b>a>c
B、c>b>a
C、b>c>a
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列關(guān)于互不相同的直線(xiàn)m、l、n和平面α、β的四個(gè)命題:其中為真命題的是
 

①若m?α,l∩α=A,點(diǎn)A∉m,則l與m不共面;
②若m⊥α,且n⊥β,n⊥m,則α⊥β;
③當(dāng)m,n在平面α內(nèi)射影互相垂直,則m⊥n;
④若l∥α,m∥β,α∥β,則l∥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直角坐標(biāo)平面內(nèi)A、B兩點(diǎn)滿(mǎn)足:①點(diǎn)A、B都在函數(shù)f(x)的圖象上;②點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱(chēng),則這兩點(diǎn)A、B構(gòu)成函數(shù)f(x)的一個(gè)“姊妹點(diǎn)對(duì)”,已知函數(shù)f(x)=
x2+2x(x<0)
2
ex
(x≥0)
,則f(x)的“姊妹點(diǎn)對(duì)”有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知整數(shù)數(shù)集 A={a1,a2,a3,…,an}(a1<a2<a3<…<an,n≥3)具有性質(zhì) P:對(duì)任意i,j,k(1≤i<j<k),ai+ak-aj∈A.
(Ⅰ)請(qǐng)舉出一個(gè)滿(mǎn)足上述條件且含有5個(gè)元素的數(shù)集 A;
(Ⅱ)求證:a1,a2,a3,…,an是等差數(shù)列;
(Ⅲ)已知a1=2,an=2015,且20∈A⊆N,求數(shù)集 A中所有元素的和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案