已知函數(shù)f(x)=sin(2x+
π
3
)
.求函數(shù)f(x)的對稱軸,并求函數(shù)f(x)在區(qū)間[0,
π
2
]
內(nèi)的值域.
考點:正弦函數(shù)的對稱性
專題:三角函數(shù)的圖像與性質(zhì)
分析:由2x+
π
3
=kπ+
π
2
解x可得對稱軸方程,由x∈[0,
π
2
]
結(jié)合三角函數(shù)的性質(zhì)可得值域.
解答: 解:由2x+
π
3
=kπ+
π
2
可得x=
2
+
π
12
,k∈Z,
∴函數(shù)f(x)的對稱軸為x=
2
+
π
12
,k∈Z,
當(dāng)x∈[0,
π
2
]
時,2x+
π
3
∈[
π
3
3
],
∴sin(2x+
π
3
)∈[-
3
2
,1],
∴函數(shù)f(x)在區(qū)間[0,
π
2
]
內(nèi)的值域為:[-
3
2
,1]
點評:本題考查正弦函數(shù)的對稱性和值域,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求證:如果兩條直線同時垂直于一個平面,那么這兩條直線平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與拋物線y2=8x相切且傾斜角為135°的直線l與x軸和y軸的交點分別是A和B,那么過A,B兩點的最小圓截拋物線y2=8x的準(zhǔn)線所得的弦長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-3)2+(y-4)2=1,點A(0,-1),B(0,1),設(shè)P點是圓C上的動點,d=|PA|2+|PB|2,求d的最大、最小值及對應(yīng)的P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各點,在函數(shù)y=2x-1的圖象上的是(  )
A、P1(-
1
2
,0)
B、P2(-
1
4
,-
3
2
C、P3(0,1)
D、P4
1
4
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:關(guān)于x的不等式ax>1(a>0,a≠1)的解集為(-∞,0);命題q:函數(shù)f(x)=ln(ax2-x+2)的定義域是R.如果命題“p∨q”為真命題,“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程
x2
a-1
+
y2
a-5
=1表示雙曲線,命題q:關(guān)于x的方程x2-3ax+2a2+1=0的兩個相異實根均大于3.若p、q中有且僅有一個為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sin(x+
π
4
),3cos(x+
π
4
))與
b
=(1,1)且滿足
a
b
,其中x∈(0,
π
2
).
(1)求sinx的值;
(2)若θ∈(0,
π
2
),cos(x+θ)=
3
5
,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=8x,直線l過定點P(-3,1),斜率為k,當(dāng)k為何值時,直線l與拋物線只有一個公共點,并寫出相應(yīng)直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案