已知圓C過定點F(-
1
4
,0),且與直線x=
1
4
相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點.
(I)求曲線E的方程;
(II)當△OAB的面積等于
10
時,求k的值;
分析:(I)根據(jù)題意可知點C到定點(-
1
4
,0)和直線x=
1
4
的距離相等,根據(jù)拋物線的定義可求得點C的軌跡方程.
(II)把直線與拋物線方程聯(lián)立消去x,設出點A,B的坐標,根據(jù)韋達定理表示出y1+y2和y1y2,設直線l與x軸的交點為N,則N的坐標可得,進而根據(jù)S△OAB=S△OAN+S△OBN求得k
解答:解:(I)由題意,點C到定點(-
1
4
,0)和直線x=
1
4
的距離相等,
所以點C的軌跡方程為y2=-x
(II)由方程組
y2=-x
y=k(x+1)
消去x,整理得ky2+y-k=0
設點A(x1,y1),B(x2,y2),則y1+y2=-
1
k
,y1y2=-1
設直線l與x軸的交點為N,則N(-1,0)
∵S△OAB=S△OAN+S△OBN=
1
2
|ON||y1|+
1
2
|ON||y2|=
1
2
•1•
(y1+y22-4y1y2
=
1
2
(
1
k
)
2
+4

∵S△OAB=
10
,求得k=±
1
6
點評:本題主要考查了直線與圓錐曲線的綜合問題.考查了學生對直線與圓錐曲線問題中韋達定理,平面解析幾何的知識等知識的綜合運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,點P到點F的距離等于點P到直線l的距離.
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓C過定點F(1,0),且與定直線x=-1相切.
(Ⅰ) 求動圓圓心C的軌跡T的方程;
(Ⅱ)若軌跡T上有兩個定點A、B分別在其對稱軸的上、下兩側,且|FA|=2,|FB|=5,在軌跡T位于A、B兩點間的曲線段上求一點P,使P到直線AB的距離最大,并求距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ
,動點P的軌跡為C,已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設|DA|=l1,|DB|=l2,則
l1
l2
+
l2
l1
的最大值為
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:2010年四川省自貢市高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知圓C過定點F(-,0),且與直線x=相切,圓心C的軌跡為E,曲線E與直線l:y=k(x+1)(k∈R)相交于A、B兩點.
(I)求曲線E的方程;
(II)當△OAB的面積等于時,求k的值;

查看答案和解析>>

同步練習冊答案