(2005•遼寧)已知函數(shù)f(x)=(x≠﹣1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an﹣|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用數(shù)學(xué)歸納法證明bn≤;
(Ⅱ)證明Sn<.
見解析
【解析】
試題分析:(Ⅰ)我們用數(shù)學(xué)歸納法進(jìn)行證明,先證明不等式bn≤當(dāng)n=1時(shí)成立,再假設(shè)不等式bn≤當(dāng)n=k(k≥1)時(shí)成立,進(jìn)而證明當(dāng)n=k+1時(shí),不等式bn≤也成立,最后得到不等式bn≤對于所有的正整數(shù)n成立;
(Ⅱ)根據(jù)(Ⅰ)的結(jié)論,我們可以利用放縮法證明Sn<,放縮后可以得到一個(gè)等比數(shù)列,然后根據(jù)等比數(shù)列前n項(xiàng)公式,即可得到答案.
證明:(Ⅰ)當(dāng)x≥0時(shí),f(x)=1+≥1.
因?yàn)閍1=1,所以an≥1(n∈N*).
下面用數(shù)學(xué)歸納法證明不等式bn≤.
(1)當(dāng)n=1時(shí),b1=﹣1,不等式成立,
(2)假設(shè)當(dāng)n=k時(shí),不等式成立,即bk≤.
那么bk+1=|ak+1﹣|=
≤.
所以,當(dāng)n=k+1時(shí),不等式也成立.
根據(jù)(1)和(2),可知不等式對任意n∈N*都成立.
(Ⅱ)由(Ⅰ)知,bn≤.
所以Sn=b1+b2+…+bn≤(﹣1)++…+=(﹣1)•<(﹣1)•=.
故對任意n∈N*,Sn<.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 2.4一次同余方程練習(xí)卷(解析版) 題型:填空題
設(shè)a、b、m(m>0)為整數(shù),若a和b被m除得的余數(shù)相同,則稱a和b對模m同余,記為a≡b(bmodm);已知a=1+C201+C202•2+C203•22+…+C2020•219,b≡a(bmod10),則滿足條件的正整數(shù)b中,最小的兩位數(shù)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:填空題
用“秦九韶算法”計(jì)算多項(xiàng)式f(x)=4x5﹣3x4+4x3﹣2x2﹣2x+3的值,當(dāng)x=3時(shí),求多項(xiàng)式值的過程中,要經(jīng)過 次乘法運(yùn)算和 次加法運(yùn)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題
今天是星期四,再過22009天后的那一天是( )
A.星期一 B.星期二 C.星期五 D.星期六
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-6 1.1整除練習(xí)卷(解析版) 題型:選擇題
(2011•江西模擬)在算式“”中,△、Θ都為正整數(shù),且它們的倒數(shù)之和最小,則△、Θ的值分別為( )
A.6,6 B.10,5 C.14,4 D.18,3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.2數(shù)學(xué)歸納法證明不等式舉例(解析版) 題型:填空題
用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 4.1數(shù)學(xué)歸納法練習(xí)卷(解析版) 題型:選擇題
用數(shù)學(xué)歸納法證明“2n>n2+1對于n≥n0的自然數(shù)n都成立”時(shí),第一步證明中的起始值n0應(yīng)。 )
A.2 B.3 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 3.3排序不等式練習(xí)卷(解析版) 題型:解答題
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,證明:≤()•().當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí)等號成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-5 2.3反證法與放縮法練習(xí)卷(解析版) 題型:選擇題
用反證法證明命題:“一個(gè)三角形中不能有兩個(gè)直角”的過程歸納為以下三個(gè)步驟:
①A+B+C=90°+90°+C>180°,這與三角形內(nèi)角和為180°相矛盾,A=B=90°不成立;
②所以一個(gè)三角形中不能有兩個(gè)直角;
③假設(shè)三角形的三個(gè)內(nèi)角A、B、C中有兩個(gè)直角,不妨設(shè)A=B=90°,
正確順序的序號為( )
A.①②③ B.①③② C.②③① D.③①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com