已知P是直線上的動(dòng)點(diǎn),PA、PB是圓的兩條切線,C是圓心,那么四邊形PACB面積的最小值(  )
A.           B.2          C.        D.2
C

試題分析:如圖,所以四邊形PACB面積的最小值就是的最小值,而,本題要求出最小的的值,即為圓心C(1,1)到直線的最短距離,所以.即四邊形PACB面積的最小值是.所以選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的三個(gè)頂點(diǎn),,,其外接圓為
(1)若直線過點(diǎn),且被截得的弦長為2,求直線的方程;
(2)對(duì)于線段上的任意一點(diǎn),若在以為圓心的圓上都存在不同的兩點(diǎn),使得點(diǎn)是線段的中點(diǎn),求的半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,直線
(1)判斷直線與圓C的位置關(guān)系;
(2)設(shè)與圓C交與不同兩點(diǎn)A、B,求弦AB的中點(diǎn)M的軌跡方程;
(3)若定點(diǎn)P(1,1)分弦AB為,求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓O的直徑AB=4,定直線L到圓心的距離為4,且直線L⊥直線AB。點(diǎn)P是圓O上異于A、B的任意一點(diǎn),直線PA、PB分別交L與M、N點(diǎn)。
試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決下列問題:

(1)若∠PAB=30°,求以MN為直徑的圓方程;
(2)當(dāng)點(diǎn)P變化時(shí),求證:以MN為直徑的圓必過圓O內(nèi)的一定點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C: 直線
(1)證明:不論取何實(shí)數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓有兩個(gè)不同交點(diǎn)的一個(gè)充分不必要條件是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)后所得直線與圓相切,,則的最小值為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)的直線與圓截得的弦長為,則該直線的方程為             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線為參數(shù))與圓為參數(shù)),則直線的傾斜角及圓心的直角坐標(biāo)分別是            

查看答案和解析>>

同步練習(xí)冊(cè)答案