【題目】橢圓,其長(zhǎng)軸是短軸的兩倍,以某短軸頂點(diǎn)和長(zhǎng)軸頂點(diǎn)為端點(diǎn)的線(xiàn)段作為直徑的圓的周長(zhǎng)為,直線(xiàn)與橢圓交于兩點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線(xiàn)的垂線(xiàn),垂足為.若,求點(diǎn)的軌跡方程;

(3)設(shè)直線(xiàn),,的斜率分別為,,其中.設(shè)的面積為.以、為直徑的圓的面積分別為,求的取值范圍.

【答案】(1);(2;(3.

【解析】

1)由題意知a2b,且,由此能求出橢圓方程.

2)先考慮直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)的方程為,和橢圓的方程聯(lián)立,結(jié)合向量的垂直關(guān)系即可找到找m,k的關(guān)系式,從而求得.再驗(yàn)證斜率不存在時(shí)也滿(mǎn)足,則可得點(diǎn)的軌跡方程.

(3)設(shè)直線(xiàn)l的方程為ykx+mAx1,y1),Bx2,y2),聯(lián)立,利用韋達(dá)定理、橢圓弦長(zhǎng)公式結(jié)合已知條件能求出的取值范圍.

(1)由題可知,,且,解得:,

故橢圓的方程為:.

(2)當(dāng)直線(xiàn)斜率存在時(shí),設(shè)直線(xiàn)的方程為,

可得,由韋達(dá)定理有:

,∴,即

由韋達(dá)定理代入化簡(jiǎn)得:

垂直直線(xiàn),

當(dāng)直線(xiàn)斜率不存在時(shí),設(shè),易求,此時(shí)

所以點(diǎn)的軌跡方程為.

(3)設(shè)直線(xiàn)的方程為,

可得,由韋達(dá)定理有:

,∴,即

由韋達(dá)定理代入化簡(jiǎn)得:.

,∴

此時(shí),即.

為定值.

∴當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

綜上:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱ABCA1B1C1中,側(cè)棱AA1⊥底面A1B1C1,AA11,底面三角形A1B1C1是邊長(zhǎng)為2的正三角形,EBC中點(diǎn),則下列說(shuō)法正確的是(

CC1AB1所成角的余弦值為

AB⊥平面ACC1A1

③三角形AB1E為直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】5名男生3名女生參加升旗儀式:

(1)站兩橫排,3名女生站前排,5名男生站后排有多少種站法?

(2)站兩縱列,每列4人,每列都有女生且女生站在男生前面,有多少種排列方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】哈師大附中高三學(xué)年統(tǒng)計(jì)甲、乙兩個(gè)班級(jí)一模數(shù)學(xué)分?jǐn)?shù)(滿(mǎn)分150分),每個(gè)班級(jí)20名同學(xué),現(xiàn)有甲、乙兩位同學(xué)的20次成績(jī)?nèi)缦铝星o葉圖所示:

(I)根據(jù)基葉圖求甲、乙兩位同學(xué)成績(jī)的中位數(shù),并將乙同學(xué)的成績(jī)的頻率分布直方圖填充完整;

(Ⅱ)根據(jù)基葉圖比較甲乙兩位同學(xué)數(shù)學(xué)成績(jī)的平均值及穩(wěn)定程度(不要求計(jì)算出具體值,給出結(jié)論即可)

(Ⅲ)現(xiàn)從甲乙兩位同學(xué)的不低于140分的成績(jī)中任意選出2個(gè)成績(jī),設(shè)事件為“其中2 個(gè)成績(jī)分別屬于不同的同學(xué)”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】棱長(zhǎng)為1的正方體中,點(diǎn)分別在線(xiàn)段、上運(yùn)動(dòng)(不包括線(xiàn)段端點(diǎn)),且.以下結(jié)論:①;②若點(diǎn)、分別為線(xiàn)段的中點(diǎn),則由線(xiàn)確定的平面在正方體上的截面為等邊三角形;③四面體的體積的最大值為;④直線(xiàn)與直線(xiàn)的夾角為定值.其中正確的結(jié)論為______.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某代賣(mài)店代售的某種快餐,深受廣大消費(fèi)者喜愛(ài),該種快餐每份進(jìn)價(jià)為8元,并以每份12元的價(jià)格銷(xiāo)售.如果當(dāng)天19:00之前賣(mài)不完,剩余的該種快餐每份以5元的價(jià)格作特價(jià)處理,且全部售完.

(1)若這個(gè)代賣(mài)店每天定制15份該種快餐,求該種類(lèi)型快餐當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量x(單位:份,)的函數(shù)解析式;

(2)該代賣(mài)點(diǎn)記錄了一個(gè)月30天的每天19:00之前的銷(xiāo)售數(shù)量該種快餐日需求量,統(tǒng)計(jì)數(shù)據(jù)如下:

日需求量

12

13

14

15

16

17

天數(shù)

4

5

6

8

4

3

以30天記錄的日需求量的頻率作為日需求量發(fā)生的概率,假設(shè)這個(gè)代賣(mài)店在這一個(gè)月內(nèi)每天都定制15份該種快餐.

(i)求該種快餐當(dāng)天的利潤(rùn)不少于52元的概率.

(ii)求這一個(gè)月該種快餐的日利潤(rùn)的平均數(shù)(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的,則判斷框內(nèi)可以填入

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩個(gè)班級(jí)均為40人,進(jìn)行一門(mén)考試后,按學(xué)生考試成績(jī)及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為36人,乙班及格人數(shù)為24人.

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;

(2)試判斷能否有99.5%的把握認(rèn)為“考試成績(jī)與班級(jí)有關(guān)”?參考公式: ;n=a+b+c+d

P(>k)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省2016年高中數(shù)學(xué)學(xué)業(yè)水平測(cè)試的原始成績(jī)采用百分制,發(fā)布成績(jī)使用等級(jí)制.各等制劃分標(biāo)準(zhǔn)為:85分及以上,記為等;分?jǐn)?shù)在內(nèi),記為等;分?jǐn)?shù)在內(nèi),記為等;60分以下,記為等.同時(shí)認(rèn)定為合格, 為不合格.已知甲,乙兩所學(xué)校學(xué)生的原始成績(jī)均分布在內(nèi),為了比較兩校學(xué)生的成績(jī),分別抽取50名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級(jí)為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級(jí)的學(xué)生中隨機(jī)抽取3名學(xué)生進(jìn)行調(diào)研,用表示所抽取的3名學(xué)生中甲校的學(xué)生人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案