由函數(shù)f(x)=sin2x的圖象得到g(x)=cos(2x-
π
6
)的圖象,需要將f(x)的圖象(  )
分析:先根據(jù)誘導(dǎo)公式將函數(shù) y=cos(2x-
π
6
)化為正弦的形式,再根據(jù)左加右減的原則進(jìn)行平移即可得到答案.
解答:解:∵y=cos(2x-
π
6
)=sin(2x+
π
3
)=sin2(x+
π
6
),
只需將函數(shù)y=sin2x的圖象向左平移
π
6
個(gè)單位得到函數(shù) y=cos(2x-
π
6
)的圖象.
故選B.
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式和三角函數(shù)的平移.屬基礎(chǔ)題.三角函數(shù)的平移原則為左加右減上加下減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x)=sin2ωx+
3
sinωx cosωx,x∈R,又f (α)=-
1
2
,f (β)=
1
2
,若|α-β|的最小值為
4
,則正數(shù)ω的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)-1
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)說明函數(shù)α的圖象可由函數(shù)f(x)=2sin(2x+
π
3
)-1的圖象經(jīng)過怎樣的變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=sin2(x+
π
4
)-
1
2
,則函數(shù)f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)設(shè)函數(shù)f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,0)
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|φ|<
π
4
,函數(shù)f(x)=sin2(x+φ).若f(
π
4
)=
3
4
,則φ等于(  )
A、-
π
12
B、-
π
6
C、
π
12
D、
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案