袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為數(shù)學公式,
(I)求n;
(II)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

解:(I)由條件可知,….(3分)
解得n=4(負值舍去)…..(5分)
(II)隨機變量ξ的取值為0,1,2…..(6分)
ξ的分布列為
ξ012
P
.…(12分)
所以ξ的數(shù)學期望為 ….(14分)
分析:(I)由于每個球被摸到的機會是均等的,故可用古典概型的概率公式解答.
(II)ξ為相鄰兩次摸出的球不同色的次數(shù),則隨機變量ξ的取值為0,1,2,利用古典概型的概率公式求出相應的概率,進而可得ξ的分布列及其數(shù)學期望Eξ.
點評:本題主要考查了隨機事件概率的求法,同時考查了離散型隨機變量的概率分布列及數(shù)學期望.解題時應掌握如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•溫州一模)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為
25
,
(I)求n;
(II)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三第一次統(tǒng)練理科數(shù)學試卷(解析版) 題型:解答題

(本大題9分)袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,(Ⅰ)求n;(Ⅱ)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省臺州中學高三(上)第一次統(tǒng)練數(shù)學試卷(理科)(解析版) 題型:解答題

袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為
(I)求n;
(II)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省溫州市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

袋中有2個紅球,n個白球,各球除顏色外均相同.已知從袋中摸出2個球均為白球的概率為,
(I)求n;
(II)從袋中不放回的依次摸出三個球,記ξ為相鄰兩次摸出的球不同色的次數(shù)(例如:若取出的球依次為紅球、白球、白球,則ξ=1),求隨機變量ξ的分布列及其數(shù)學期望Eξ.

查看答案和解析>>

同步練習冊答案