【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 = ﹣…+(﹣1)n+1 ,求數(shù)列{bn}的通項公式;
(3)在(2)的條件下,設cn=2n+λbn , 問是否存在實數(shù)λ使得數(shù)列{cn}(n∈N*)是單調遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請說明你的理由.

【答案】
(1)解:由Sn=2an﹣2(n∈N*),可得a1=2a1﹣2,解得a1=2;

n≥2時,an=Sn﹣Sn1=2an﹣2﹣(2an1﹣2),化為:an=2an1

∴數(shù)列{an}是等比數(shù)列,公比為2,首項為2.∴an=2n


(2)解:∵ = = ﹣…+(﹣1)n+1 ,

= ﹣…+

=(﹣1)n+1 ,∴bn=(﹣1)n

當n=1時, = ,解得b1= .∴bn=


(3)解:cn=2n+λbn,

∴n≥3時,cn=2n ,cn1=2n1+(﹣1)n1λ

cn﹣cn1=2n1+ >0,即(﹣1)nλ>﹣

① 當n為大于或等于4的偶數(shù)時,λ>﹣ ,即λ>﹣ ,當且僅當n=4時,λ>﹣

②當n為大于或等于3的奇數(shù)時,λ< ,當且僅當n=3時,λ<

當n=2時,c2﹣c1= >0,即λ<8.

綜上可得:λ的取值范圍是


【解析】(1)由Sn=2an﹣2(n∈N*),可得a1=2a1﹣2,解得a1=2;n≥2時,an=Sn﹣Sn1 , 化為:an=2an1 . 即可得出.(2) = = ﹣…+(﹣1)n+1 ,n≥2時, = ﹣…+ ,相減可得:bn=(﹣1)n .當n=1時, = ,解得b1= .(3)cn=2n+λbn , n≥3時,cn=2n ,cn﹣cn1=2n1+ >0,即(﹣1)nλ>﹣ .①當n為大于或等于4的偶數(shù)時,λ>﹣ .②當n為大于或等于3的奇數(shù)時,λ< .當n=2時,c2﹣c1>0,即λ<8.即可得出.
【考點精析】認真審題,首先需要了解數(shù)列的前n項和(數(shù)列{an}的前n項和sn與通項an的關系),還要掌握數(shù)列的通項公式(如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在直角梯形BB1C1C中,∠CC1B1=90°,BB1∥CC1 , CC1=B1C1=2BB1=2,D是CC1的中點.四邊形AA1C1C可以通過直角梯形BB1C1C以CC1為軸旋轉得到,且二面角B1﹣CC1﹣A為120°.
(1)若點E是線段A1B1上的動點,求證:DE∥平面ABC;
(2)求二面角B﹣AC﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】閱讀如圖的程序框圖,運行相應的程序,輸出的結果為(
A.3
B.
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知斜三棱柱ABC﹣A1B1C1的所有棱長均為2,∠B1BA= ,且側面ABB1A1⊥底面ABC. (Ⅰ)證明:B1C⊥AC1
(Ⅱ)若M為A1C1的中點,求二面角A﹣B1M﹣A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 為f(x)的零點,x= 為y=f(x)圖象的對稱軸,且f(x)在( , )單調,則ω的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)是定義在區(qū)間(0,+∞)上的可導函數(shù),其導函數(shù)為f′(x),且滿足xf′(x)+2f(x)>0,則不等式 的解集為(
A.{x>﹣2011}
B.{x|x<﹣2011}
C.{x|﹣2011<x<0}
D.{x|﹣2016<x<﹣2011}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,以x軸的正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+ )=2
(1)寫出C1的普通方程和C2的直角坐標方程;
(2)設點P在C1上,點Q在C2上,求|PQ|的最小值及此時P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等差數(shù)列{an}的前n項和為Sn , 且S4=4S2 , a2n=2an+1﹣3.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足a1b1+a2b2+…+anbn=3﹣ ,求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣m|﹣2|x﹣1|(m∈R)
(1)當m=3時,求函數(shù)f(x)的最大值;
(2)解關于x的不等式f(x)≥0.

查看答案和解析>>

同步練習冊答案