|
(1) |
解:由于橢圓過點(diǎn)A(0,),則(1分),而的周長為, 則,由橢圓定義知,, 故(3分),而,聯(lián)立解得(5分), 因此,橢圓方程為(6分) 說明:本題還有其它方法,如可設(shè)M(),(),MN的中點(diǎn)為P(), 則,,兩式相減得, ∵,,,故①,設(shè),則AP⊥MN,,②,聯(lián)立①、②得,,而點(diǎn)P在直線MN上,,即,此時(shí)直線方程為,代入橢圓方程無實(shí)數(shù)解,則直線與橢圓C無交點(diǎn),因此,不存在實(shí)數(shù),使得.當(dāng)然也可以根據(jù)點(diǎn)P(,)不在橢圓C內(nèi)而知直線與橢圓C無交點(diǎn). |
(2) |
解:假設(shè)存在實(shí)數(shù)m滿足題設(shè),由得 由于直線與橢圓有兩個(gè)交點(diǎn),即①(8分) 設(shè)MN的中點(diǎn)為P(xP,yP),xM、xN分別為點(diǎn)M、N的橫坐標(biāo),則從而,(10分) 又,則,而,∴(12分) 即,此與①相矛盾(13分),因此,不存在這樣的實(shí)數(shù),使得(14分) 說明:對(duì)沒有檢驗(yàn)者得出,至少要扣3分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山西省實(shí)驗(yàn)中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級(jí)第三次月考 數(shù)學(xué)試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍;
(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044
解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點(diǎn)且經(jīng)過點(diǎn)D.
(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點(diǎn),且線段MN的中點(diǎn)為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點(diǎn)E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com