【題目】如圖,在四棱錐中,平面,底面是平行四邊形,的兩個三等分點.

(1)求證平面;

(2)若平面平面,求證:.

【答案】(1)見解析(2)見解析

【解析】

(1)連結BD,AC相交于O,證明BE∥OF,即可證明BE∥平面ACF;(2)過AAH⊥PCH,利用面面垂直的性質證明AH⊥平面PCD,從而證明AH⊥CD,然后利用線面垂直的性質證明PC⊥CD.

(Ⅰ)連接BD、AC,兩線交于O,

∴OBD的中點(平行四邊形對角線互相平分),

∵FDE的中點(由三等分點得到),

∴OF是△DEB的中位線,∴BE∥OF,

∵OFACF,BEACF,

∴BE平行平面ACF.

(Ⅱ)過AAH⊥PCH,∵平面PAC⊥平面PCD,

∴AH⊥平面PCD,∵CD平面PCD,∴AH⊥CD,

∵PA⊥平面ABCD,CD平面ABCD,

∴PA⊥CD.又∵PA∩AH=A,∴CD⊥平面PAC,

∵PC平面PAC,

∴PC⊥CD.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設集合.

(1),求實數(shù)的值;

(2),求實數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2pxp0的焦點為F,過F且斜率為的直線l與拋物線C交于A,B兩點,Bx軸的上方,且點B的橫坐標為4

1)求拋物線C的標準方程;
2)設點P為拋物線C上異于A,B的點,直線PAPB分別交拋物線C的準線于E,G兩點,x軸與準線的交點為H,求證:HGHE為定值,并求出定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某沿海城市的海邊有兩條相互垂直的直線型公路l1、l2,海岸邊界MPN近似地看成一條曲線段.為開發(fā)旅游資源,需修建一條連接兩條公路的直線型觀光大道AB,且直線AB與曲線MPN有且僅有一個公共點P(即直線與曲線相切),如圖所示.若曲線段MPN是函數(shù)圖象的一段,點M到l1、l2的距離分別為8千米和1千米,點N到l2的距離為10千米,以l1、l2分別為x、y軸建立如圖所示的平面直角坐標系xOy,設點P的橫坐標為p.

(1)求曲線段MPN的函數(shù)關系式,并指出其定義域;

(2)若某人從點O沿公路至點P觀景,要使得沿折線OAP比沿折線OBP的路程更近,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中

1)在等差數(shù)列中,的充要條件;

2)已知等比數(shù)列為遞增數(shù)列,且公比為,若,則當且僅當;

3)若數(shù)列為遞增數(shù)列,則的取值范圍是;

4)已知數(shù)列滿足,則數(shù)列的通項公式為

5)若是等比數(shù)列的前項的和,且;(其中是非零常數(shù),),則A+B為零.

其中正確命題是_________(只需寫出序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】梯形頂點在以為直徑的圓上,米.

(1)如圖1,若電熱絲由這三部分組成,在上每米可輻射1單位熱量,在上每米可輻射2單位熱量,請設計的長度,使得電熱絲的總熱量最大,并求總熱量的最大值;

(2)如圖2,若電熱絲由弧和弦這三部分組成,在弧上每米可輻射1單位熱量,在弦上每米可輻射2單位熱量,請設計的長度,使得電熱絲輻射的總熱量最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四面體ABCD中,點E,F分別是ABBC的中點,則下列命題正確的序號是______

①異面直線ABCD所成角為90°;

②直線AB與平面BCD所成角為60°

③直線EF∥平面ACD

④平面AFD⊥平面BCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數(shù),該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:

(1)根據(jù)表中數(shù)據(jù)可知,頻數(shù)與日需求量(單位:個)線性相關,求關于的線性回歸方程;

(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數(shù)為24,記當日這款新面包獲得的總利潤為(單位:元).

(。┤羧招枨罅繛15個,求;

(ⅱ)求的分布列及其數(shù)學期望.

相關公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知被直線分成面積相等的四部分,且截軸所得線段的長為2.

(1)的方程;

(2)若存在過點的直線與相交于兩點,且,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案