已知函數(shù)f(x)=ex-2x+a有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,2ln2-2]
B、[2ln2-2,+∞)
C、[2ln2,+∞)
D、[2ln2-2,2ln2]
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先討論函數(shù)的單調(diào)性,得出函數(shù)的最值,由函數(shù)的最大值大于或等于零(或函數(shù)的最小值小于或等于零)得出a的取值范圍.
解答: 解:f′(x)=ex-2,可得f′(x)=0的根為x0=ln2
 當(dāng)x<ln2時(shí),f′(x)<0,可得函數(shù)在區(qū)間(-∞,ln2)上為減函數(shù);
當(dāng)x>ln2時(shí),f′(x)>0,可得函數(shù)在區(qū)間(ln2,+∞)上為增函數(shù),
∴函數(shù)y=f(x)在x=ln2處取得極小值f(ln2)=2-2ln2+a,
并且這個(gè)極小值也是函數(shù)的最小值,
由題設(shè)知函數(shù)y=f(x)的最小值要小于或等于零,即2-2ln2+a≤0,可得a≤2ln2-2,
故選:A.
點(diǎn)評(píng):利用導(dǎo)數(shù)工具討論函數(shù)的單調(diào)性,是求函數(shù)的值域和最值的常用方法,本題可以根據(jù)單調(diào)性,結(jié)合函數(shù)的圖象與x軸交點(diǎn),來(lái)幫助對(duì)題意的理解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在(0,
π
2
)上的函數(shù)y=2sinx的圖象分別與y=cosx,y=tanx的圖象交于點(diǎn)(x1,y1),(x2,y2),則
5
y1+y2=( 。
A、3+
2
B、2+
2
C、3+
3
D、2+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將n2個(gè)正整數(shù)1、2、3、…、n2(n≥2)任意排成n行n列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算某行或某列中的任意兩個(gè)數(shù)a、b(a>b)的比值
a
b
,稱這些比值中的最小值為這個(gè)數(shù)表的“特征值”.當(dāng)n=2時(shí),數(shù)表的所有可能的“特征值”的最大值為(  )
A、
4
3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,A={x∈N|y=ln(2-x)},B={x|2x(x-2)≤1},A∩B=( 。
A、{x|x≥1}
B、{x|1≤x<2}
C、{1}
D、{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),M為此雙曲線上的一點(diǎn),滿足|MF1|=3|MF2|,那么此雙曲線的離心率的取值范圍是( 。
A、(1,2)
B、(1,2]
C、(0,2)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x=
a2
a2+b2
被雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線所截得線段的長(zhǎng)度恰好等于其一個(gè)焦點(diǎn)到漸近線的距離,則此雙曲線的離心率為(  )
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的流程圖,若輸入x的值為2,則輸出x的值為( 。
A、5B、7C、125D、127

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由某種設(shè)備的使用年限xi(年)與所支出的維修費(fèi)yi(萬(wàn)元)的數(shù)據(jù)資料算得如下結(jié)果,
5
i=1
xi2=90,
5
i=1
xiyi=112,
5
i=1
xi=20,
5
i=1
yi=25.
(1)求所支出的維修費(fèi)y對(duì)使用年限x的線性回歸方程
y
=
b
x+
a
;
(2)①判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
②當(dāng)使用年限為8年時(shí),試估計(jì)支出的維修費(fèi)是多少.
(附:在線性回歸方程
y
=
b
x+
a
中,
b
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x
,其中
.
x
,
.
y
為樣本平均值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(1+cosα,1-sinα),參數(shù)α∈R,點(diǎn)Q在曲線C:ρ=
6
2
sin(θ+
π
4
)
上.
(1)求點(diǎn)P的軌跡方程和曲線C的直角坐標(biāo)方程;
(2)求點(diǎn)P與點(diǎn)Q之間距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案