【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:

學校

抽查人數(shù)

50

15

10

25

“創(chuàng)城”活動中參與的人數(shù)

40

10

9

15

(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.

(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);

(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;

(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?

【答案】(1)800;(2);(3)

【解析】

1)根據(jù)總數(shù)、頻數(shù)與頻率關系求結果,(2)根據(jù)總數(shù)、頻數(shù)與頻率關系求概率,(3)利用枚舉法確定總事件數(shù)以及所求事件包含事件數(shù),最后根據(jù)古典概型概率公式求解.

(1)學校高中生的總人數(shù)為

學校參與“創(chuàng)城”活動的人數(shù)為

(2)設恰好該生沒有參與“創(chuàng)城”活動這一事件為,

(3)校這5人分別記為,校這1人記為

任取2人共15種情況,如下:

設事件為抽取2人中兩校各有1人參與”創(chuàng)城”活動,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù)為.

1)試討論函數(shù)的零點個數(shù);

2)若對任意的,關于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 山東省《體育高考方案》于20122月份公布,方案要求以學校為單位進行體育測試,某校對高三1班同學按照高考測試項目按百分制進行了預備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分數(shù)段的人數(shù)為2.

)請估計一下這組數(shù)據(jù)的平均數(shù)M;

)現(xiàn)根據(jù)初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為幫扶組,試求選出的兩人為幫扶組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調(diào)查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如表所示:

(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);

(2)根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的22列聯(lián)表,據(jù)此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

參考數(shù)據(jù):

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在點處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設

i)若函數(shù)上恒成立,求的最大值;

ii)當時,判斷函數(shù)有幾個零點,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠生產(chǎn)、兩種零件,其質(zhì)量測試按指標劃分,指標大于或等于的為正品,小于的為次品.現(xiàn)隨機抽取這兩種零件各100個進行檢測,檢測結果統(tǒng)計如下:

測試指標

零件

8

12

40

30

10

零件

9

16

40

28

7

(Ⅰ)試分別估計、兩種零件為正品的概率;

(Ⅱ)生產(chǎn)1個零件,若是正品則盈利50元,若是次品則虧損10元;生產(chǎn)1個零件,若是正品則盈利60元,若是次品則虧損15元,在(Ⅰ)的條件下:

(i)設為生產(chǎn)1個零件和一個零件所得的總利潤,求的分布列和數(shù)學期望;

(ii)求生產(chǎn)5個零件所得利潤不少于160元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是平面內(nèi)共始點的三個非零向量,且兩兩不共線,有下列命題:

1)關于的方程可能有兩個不同的實數(shù)解;

2)關于的方程至少有一個實數(shù)解;

3)關于的方程最多有一個實數(shù)解;

4)關于的方程若有實數(shù)解,則三個向量的終點不可能共線;

上述命題正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:

(1)根據(jù)表中的數(shù)據(jù),運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關系?并指出是正相關還是負相關;

(2)①求出關于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據(jù):,.

參考公式:相關系數(shù),回歸直線方程

其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),若以該直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:(其中為常數(shù)).

(1)若曲線與曲線有兩個不同的公共點,求的取值范圍;

(2)當時,求曲線上的點與曲線上點的最小距離.

查看答案和解析>>

同步練習冊答案