設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x,則f(3.5)的值是( 。
分析:求出函數(shù)的周期,然后利用函數(shù)的奇偶性求解f(3.5)的值.
解答:解:因?yàn)閒(x+2)=-f(x),
所以f(x+4)=-f(x+2)=f(x),所以函數(shù)的周期是4.
f(3.5)=f(3.5-4)=f(-0.5),
因?yàn)楹瘮?shù)是奇函數(shù),所以f(-0.5)=-f(0.5),
當(dāng)0≤x≤1時(shí),f(x)=x,
所以-f(0.5)=-0.5,
即f(3.5)=-0.5.
故選B.
點(diǎn)評:本題考查函數(shù)的值的求法,考查函數(shù)的周期性以及奇偶性的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•咸安區(qū)模擬)設(shè)f(x)是定義域?yàn)镽的奇函數(shù),g(x)是定義域?yàn)镽的恒大于零的函數(shù),且當(dāng)x>0時(shí)有f′(x)g(x)<f(x)g′(x).若f(1)=0,則不等式f(x)>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•孝感模擬)對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,求
(1)函數(shù)f(x)=x3-3x2+3x對稱中心為
(1,1)
(1,1)

(2)若函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
+
1
x-
1
2
,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)=
2010
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•河北區(qū)一模)設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f′(x)的圖象如圖所示,則f(x)的圖象最有可能是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在實(shí)數(shù)R上的函數(shù),g(x)是定義在正整數(shù)N*上的函數(shù),同時(shí)滿足下列條件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),當(dāng)x<0時(shí),f(x)>1且f(-1)=
5
;
(2)g(1)=f(0),g(2)=f(-2);
(3)f[g(n+2)]=
f[(n+3)g(n+1)]
f[(n+2)g(n)]
,n∈N*
試求:
(1)證明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0
;
(2)是否存在正整數(shù)n,使得g(n)是25的倍數(shù),若存在,求出所有自然數(shù)n;若不存在說明理由.(階乘定義:n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且f(2)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)<0恒成立,則不等式x2f(x)>0的解集是( 。
A、(-∞,-2)∪(0,2)B、(-2,0)∪(2,+∞)C、(-2,2)D、(-∞,-2)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案