已知函數(shù)f(x)=log2x,將y=f(x)的圖象向左平移兩個(gè)單位,再將圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍(橫坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,
(1)求函數(shù)y=g(x);
(2)求函數(shù)F(x)=f(x)-g(x)的最大值.
分析:(1)由題意和圖象平移變換法則,求出g(x)并注明x的范圍;
(2)由(1)求出F(x)和x的范圍,再由對(duì)數(shù)的運(yùn)算化簡(jiǎn),再利用基本不等式和對(duì)數(shù)單調(diào)性,求出此函數(shù)的最大值.
解答:解:(1)根據(jù)題意和圖象平移變換法則得,
g(x)=2log2(x+2),(x>-2),
(2)由(1)得,
F(x)=f(x)-g(x)=log2x-2log2(x+2),且x>0,
F(x)=
log
x
(x+2)2
2
=
log
x
x2+4x+4
2
=
log
1
x+
4
x
+4
2
,
∵x>0,∴x+
4
x
≥2
x•
4
x
=4
,當(dāng)且僅當(dāng)x=
4
x
時(shí)取等號(hào),此時(shí)x=2,
log
1
x+
4
x
+4
2
≤log
1
8
2
=-3,
則F(x)max=-3.
點(diǎn)評(píng):本題考查了圖象平移變換法則,用基本不等式和對(duì)數(shù)單調(diào)性的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案