設(shè)函數(shù)f(x)=若f(3)=2,f(-2)=0,則a+b=( )
A.-1
B.0
C.1
D.2
【答案】分析:由題意f(3)=2,f(-2)=0,可以依據(jù)函數(shù)的解析式直接得到參數(shù)a,b的方程,解出a,b的值,即可求得a+b
解答:解:由題設(shè)條件得,
解得
故a+b=2
故應(yīng)選D.
點評:本題考點是函數(shù)的值,考查已知函數(shù)圖象上點的坐標求解析式中的參數(shù),此題的解析式是一分段函數(shù),故代入解析式要注意應(yīng)該代入那一段,避免馬虎出錯.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實數(shù),e為自然對數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(1,0),求p的值;
(3)若在[1,e]上至少存在一點x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),f″(x)是函數(shù)f(x)的導(dǎo)數(shù),此時,稱f″(x)為原函數(shù)f(x)的二階導(dǎo)數(shù).若二階導(dǎo)數(shù)所對應(yīng)的方程f''(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)f(x)的“拐點”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且“拐點”就是對稱中心.
設(shè)三次函數(shù)f(x)=2x3-3x2-24x+12請你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x3-3x2-24x+12的對稱中心坐標為
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)

②計算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動點”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點”.函數(shù)f(x)的“不動點”和“穩(wěn)定點”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請給出證明,若不能,請舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案