(本小題滿分13分)

一個(gè)袋中有4個(gè)大小相同的小球,其中紅球1個(gè),白球2個(gè),黑球1個(gè),現(xiàn)從袋中有放回地取球,每次隨機(jī)取一個(gè),求:

(Ⅰ)連續(xù)取兩次都是白球的概率;

(Ⅱ)若取一個(gè)紅球記2分,取一個(gè)白球記1分,取一個(gè)黑球記0 分,連續(xù)取三次分?jǐn)?shù)之和為4分的概率.

 

【答案】

(Ⅰ);(Ⅱ)

【解析】本題考查概率的求法與運(yùn)用,一般方法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=mn

(1)利用列舉法寫出連續(xù)取兩次的事件總數(shù)情況,共16種,從中算出連續(xù)取兩次都是白球的種數(shù),最后求出它們的比值即可;

(2)用列舉法求出連續(xù)取三次的基本事件總數(shù),從中數(shù)出連續(xù)取三次分?jǐn)?shù)之和為4分的種數(shù),求出它們的比值即為所求的概率.

解:(1)設(shè)連續(xù)取兩次的事件總數(shù)為:(紅,紅),(紅,白1),(紅,白2),(紅,黑);(白1,紅)(白1,白1)(白1,白2),(白1,黑);(白2,紅),(白2,白1),(白2,白2),(白2,黑);(黑,紅),(黑,白1),(黑,白2),(黑,黑),所以.……  2分

設(shè)事件A:連續(xù)取兩次都是白球,(白1,白1)(白1,白2),(白2,白1),(白2,白2)共4個(gè),    ……  4分

所以,。            …  6分

(2)連續(xù)取三次的基本事件總數(shù)為N:(紅,紅,紅),(紅,紅,白1),(紅,紅,白2),(紅,紅,黑),有4個(gè);(紅,白1,紅),(紅,白1,白1),等等也是4個(gè),如此,個(gè);                                             …………………………… 8分

設(shè)事件B:連續(xù)取三次分?jǐn)?shù)之和為4分;因?yàn)槿∫粋(gè)紅球記2分,取一個(gè)白球記1分,取一個(gè)黑球記0 分,則連續(xù)取三次分?jǐn)?shù)之和為4分的有如下基本事件:

(紅,白1,白1),(紅,白1,白2),(紅,白2,白1),(紅,白2,白2),(白1,紅,白1),(白1,紅,白2),(白2,紅,白1),(白2,紅,白2),

(白1,白1,紅),(白1,白2,紅),(白2,白1,紅),(白2,白2,紅),

(紅,紅,黑),(紅,黑,紅),(黑,紅,紅),共15個(gè)基本事件,    ……………… 10分

所以,.               ………………………… 12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案