已知直線l過點(diǎn)A(6,1)與圓C:x2+y2-8x+6y+21=0相切,
(1)求該圓的圓心坐標(biāo)及半徑長;
(2)求直線l的方程.
考點(diǎn):直線和圓的方程的應(yīng)用
專題:計(jì)算題,直線與圓
分析:(1)圓的方程化為標(biāo)準(zhǔn)方程,可得圓的圓心坐標(biāo)及半徑長;
(2)分類討論,利用圓心到直線的距離等于半徑,即可求直線l的方程.
解答: 解:(1)圓x2+y2-8x+6y+21=0,可得圓(x-4)2+(y+3)2=4,
所以圓心坐標(biāo)為(4,-3),半徑r=2.
(2)當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y-1=k(x-6),
即kx-y-6k+1=0,
則圓心到此直線的距離為d=
|4k+3-6k+1|
k2+1
=
2|k-2|
k2+1
=2

由此解得k=
3
4
,此時(shí)方程為3x-4y-14=0,
當(dāng)直線l斜率不存在時(shí),方程為x=6,
故直線l的方程為:3x-4y-14=0或x=6.
點(diǎn)評:本題考查圓的方程,考查直線與圓的位置關(guān)系,考查學(xué)生的計(jì)算能力,正確運(yùn)用點(diǎn)到直線的距離公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過兩點(diǎn)A(4,y),B(2,-3)的直線的傾斜角是135°,則y=( 。
A、5B、-5C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若sinAcosB=cosAsinB,則△ABC為( 。
A、直角三角形
B、等腰三角形
C、等腰直角三角形
D、等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+aln(x+1)
(1)當(dāng)a=-4時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈[1,2],不等式f(x)≤x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點(diǎn)A(1,3),求:
(1)直線l在兩坐標(biāo)軸上的截距相等的直線方程;
(2)直線l與兩坐標(biāo)軸的正向圍成三角形面積最小時(shí)的直線方程;
(3)求圓x2-6y+y2+2y=0關(guān)于直線OA對稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}滿足a1=3,a1+a2+…+a10=120,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-1(n∈N*),求數(shù)列{an}和{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

春暖花開季節(jié),某校舉行了踢毽子比賽,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖,已知圖中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次比賽的學(xué)生人數(shù)是多少?
(3)在這次比賽中,學(xué)生踢毽子的中位數(shù)落在第幾小組內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a+b+c=1,a,b,c>0.
(1)求證:abc≤
1
27
;
(2)求證:a2+b2+c2
3abc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)(3,-4),則sinα+cosα的值為
 

查看答案和解析>>

同步練習(xí)冊答案