已知函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),0<f(x)<1,且對(duì)于任意的實(shí)數(shù)x,y∈R,有f(x+y)=f(x)f(y).
(1)求f(0);
(2)求證:f(x)>0恒成立;
(3)判斷并證明函數(shù)f(x)在R上的單調(diào)性.
解:(1)令y=0,x=-1,得f(-1)=f(-1)f(0)…
∵x<0時(shí),0<f(x)<1,
∴f(-1)>0…
∴f(0)=1…
(2)∵當(dāng)x<0時(shí),0<f(x)<1
∴當(dāng)x>0,則-x<0,令y=-x,得f(0)=f(x)f(-x)
得
…
故對(duì)于任意x∈R,都有f(x)>0…
(3)設(shè)x
1,x
2∈R,且x
1<x
2,
則x
1-x
2<0,∴0<f(x
1-x
2)<1…
∴f(x
1)=f[(x
1-x
2)+x
2]=f(x
1-x
2)f(x
2)<f(x
2)…
∴函數(shù)f(x)在R上是單調(diào)遞增函數(shù)…
分析:(1)令y=0,x=-1,由f(x+y)=f(x)f(y)得:f(-1)=f(-1)f(0),進(jìn)而得到f(0)=1
(2)由已知中:當(dāng)x<0時(shí),0<f(x)<1,可得x>0時(shí),-x<0,令y=-x,可由(1)的結(jié)論,證得f(x)>0恒成立;
(3)設(shè)x
1,x
2∈R,且x
1<x
2,結(jié)合當(dāng)x<0時(shí),0<f(x)<1,可得f(x
1)<f(x
2),進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,可得函數(shù)f(x)在R上的單調(diào)性.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)的奇偶性與函數(shù)的單調(diào)性,函數(shù)恒成立問題,函數(shù)函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.