已知正三棱柱ABC-A1B1C1的底面邊長與側棱長相等.螞蟻甲從A點沿表面經(jīng)過棱BB1,CC1爬到點A1,螞蟻乙從B點沿表面經(jīng)過棱CC1爬到點A1.如圖,設∠PAB=α,∠QBC=β,若兩只螞蟻各自爬過的路程最短,則α+β=
 
考點:多面體和旋轉體表面上的最短距離問題
專題:計算題,空間位置關系與距離
分析:將三棱柱沿著側棱AA1展開,則tanα=
1
3
.同理tanβ=
1
2
,再利用和角的正切公式,即可得出結論.
解答: 解:將三棱柱沿著側棱AA1展開,則tanα=
1
3

同理tanβ=
1
2
,
∴tan(α+β)=
1
3
+
1
2
1-
1
3
1
2
=1,
∵α+β∈(0,
π
2
),
∴α+β=
π
4

故答案為:
π
4
點評:本題考查多面體和旋轉體表面上的最短距離問題,考查和角的正切公式,正確運用側面展開圖是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,已知AB=2,AC=AP=4,PB=2
5
,PA⊥BC,∠BAC=60°.
(Ⅰ)求證:PA⊥平面ABC;
(Ⅱ)若E為AB的中點,求直線CE與平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
1
x+1
在(a,+∞)上是減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先閱讀下面的材料:“求
1+
1+
1+…
的值時,采用了如下方法:令
1+
1+
1+…
=x,則有x=
1+x
,兩邊同時平方,得x2=1+x,解得x=
1+
5
2
(負值舍去).”----根據(jù)以上材料所蘊含的數(shù)學思想方法,可以求得函數(shù)F(x)=
3+
3+
3+
3+x
-x的零點為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足:f(x+2)=f(x+1)-f(x),若f(2)=-lg2,f(3)=-lg5,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,已知圓C經(jīng)過點P(
2
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點,則圓C的極坐標方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-mx+3,當x∈(-2,+∞)時,函數(shù)f(x)為增函數(shù),當x∈(-∞,-2)時,函數(shù)f(x)為減函數(shù),則m等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)同時滿足性質(zhì):①對任何x∈R,均有f(x3)=[f(x)]3成立;②對任何x1,x2∈R,當且僅當x1=x2時,有f(x1)=f(x2).則f(-1)+f(0)+f(1)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)可用二分法求其在區(qū)間(0,1)內(nèi)零點的是( 。
A、y=
3-4x(x≥
1
2
)
3
2
-x(x<
1
2
)
B、y=4x2-4x+1
C、y=ln
2-x
3
-x3
D、y=
1
2x-1
-
1
3

查看答案和解析>>

同步練習冊答案