(8分)已知 是正實數(shù), 求證:.
證明:由于都是正實數(shù),
所以 ;        ………………………………………2分
;       ………………………………………4分
.        ………………………………………6分
即  
所以 .               …………………………………8分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知ab>0,求證:2a3b3≥2ab2a2b.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知三角形ABC的三邊長為a、b、c,且其中任意兩邊長均不相等.若,成等差數(shù)列.(1)比較的大小,并證明你的結論;(2)求證B不可能是鈍角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若正數(shù)滿足,求證
當且僅當時,等號成立

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4—5:不等式選講
已知a,b為正數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知|a|<1,|b|<1,求證:<1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用數(shù)學歸納法證明1+2+3+ +n2,則當n=k+1時左端應在n=k的基礎上加上(  )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+ +(k+1)2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

  (12分) 設,且,,試證:。

查看答案和解析>>

同步練習冊答案