【題目】隨機(jī)詢問(wèn)某大學(xué)40名不同性別的大學(xué)生在購(gòu)買食物時(shí)是否讀營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:

總計(jì)

讀營(yíng)養(yǎng)說(shuō)明

16

8

24

不讀營(yíng)養(yǎng)說(shuō)明

4

12

16

總計(jì)

20

20

40

(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為性別與是否讀營(yíng)養(yǎng)說(shuō)明之間有關(guān)系?

(2)從被詢問(wèn)的16名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)的分布列及其均值(即數(shù)學(xué)期望).

(注: ,其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為性別與讀營(yíng)養(yǎng)說(shuō)明有關(guān);(2).

【解析】試題分析:(1)求出,然后判斷性別與是否讀營(yíng)養(yǎng)說(shuō)明之間是否有關(guān)系;(2)判斷的取值為.求出概率,然后得到分布列,求解期望即可.

試題解析:(1),

,

能在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為性別與讀營(yíng)養(yǎng)說(shuō)明有關(guān)。

(2)由題知的值為

,

的分布列為:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知tanα=2.
(1)求 的值;
(2)若α∈(0, ),求sin(α﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) =(2sinx,cosx+sinx), =(cosx,cosx﹣sinx),f(x)=
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)﹣m=0(m∈R)在區(qū)間(0, )內(nèi)有兩個(gè)不相等的實(shí)數(shù)根x1 , x2 , 記t=mcos(x1+x2),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓x2+y2=1 每一點(diǎn)的,橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到曲線C.
(1)寫出C的參數(shù)方程;
(2)設(shè)直線l:2x+y-2=0 與C的交點(diǎn)為P1,P2 ,以坐標(biāo)原點(diǎn)為極點(diǎn), x 軸的正半軸為極軸建立極坐標(biāo)系,求線段 P1P2 的中點(diǎn)且與 l 垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記bn= ,求數(shù)列{bn}的前n項(xiàng)和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面,,為棱的中點(diǎn).

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x+1)= ,則f(2x﹣1)的定義域?yàn)椋?/span>
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),直線l與y軸的交點(diǎn)為P.
(1)寫出點(diǎn)P的極坐標(biāo)(ρ,θ)(其中ρ>0,0≤θ<2π);
(2)求曲線 上的點(diǎn)到P點(diǎn)距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx+cosx,x∈R.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過(guò)怎么的變換得到?

查看答案和解析>>

同步練習(xí)冊(cè)答案