精英家教網 > 高中數學 > 題目詳情

【題目】下列四個命題中:①“等邊三角形的三個內角均為60°”的逆命題;

②“若,則方程有實根”的逆否命題;

③“全等三角形的面積相等”的否命題;

④“若,則”的否命題.

其中真命題的個數是( )

A. 0 B. 1 C. 2 D. 3

【答案】C

【解析】

其逆命題是真命題;

原命題為真,其逆否命題與原命題同真假,所以是真命題;

“全等三角形的面積相等”的否命題:不全等的三角形的面積不相等,是假命題;

“若,則”的否命題為“若ab=0,則a=0”,是假命題

對于“等邊三角形的三個內角均為60°”的逆命題:三個內角均為60°的三角形是等邊三角形,故為真命題;

對于,“若k>0,則方程x2+2xk=0的△=4+4k>0時有實根”,∴原命題為真,其逆否命題與原命題同真假,故為真命題;

對于,“全等三角形的面積相等”的否命題:不全等的三角形的面積不相等,故為假命題;

對于,“若ab≠0,則a≠0”的否命題:“若ab=0,則a=0”,故為假命題.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設常數a≥0,函數f(x)=x﹣ln2x+2alnx﹣1
(1)令g(x)=xf'(x)(x>0),求g(x)的最小值,并比較g(x)的最小值與0的大小;
(2)求證:f(x)在(0,+∞)上是增函數;
(3)求證:當x>1時,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解甲、乙兩個工廠生產的輪胎的寬度是否達標,分別從兩廠隨機各選取了個輪胎,將每個輪胎的寬度(單位: )記錄下來并繪制出如下的折線圖:

(1)分別計算甲、乙兩廠提供的個輪胎寬度的平均值;

(2)輪胎的寬度在內,則稱這個輪胎是標準輪胎.

(i)若從甲乙提供的個輪胎中隨機選取個,求所選的輪胎是標準輪胎的概率;

(ii)試比較甲、乙兩廠分別提供的個輪胎中所有標準輪胎寬度的方差大小,根據兩廠的標準輪胎寬度的平均水平及其波動情況,判斷這兩個工廠哪個廠的輪胎相對更好?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】正三棱柱ABC﹣A1B1C1底面△ABC的邊長為3,此三棱柱的外接球的半徑為 ,則異面直線AB1與BC1所成角的余弦值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場為一種躍進商品進行合理定價,將該商品按事先擬定的價格進行試銷,得到如下數據:

單位(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

(1)按照上述數據,求四歸直線方程,其中

(2)預計在今后的銷售中,銷量與單位仍然服從(Ⅰ)中的關系,若該商品的成本是每件7.5元,為使商場獲得最大利潤,該商品的單價應定為多少元?(利潤=銷售收入﹣成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E、F分別是線段BC、CD1的中點.
(1)求異面直線EF與AA1所成角的大小
(2)求直線EF與平面AA1B1B所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,已知a1=1,a2=a,an+1=k(an+an+2)對任意n∈N*都成立,數列{an}的前n項和為Sn
(1)若{an}是等差數列,求k的值;
(2)若a=1,k=﹣ ,求Sn;
(3)是否存在實數k,使數列{am}是公比不為1的等比數列,且任意相鄰三項am , am+1 , am+2按某順序排列后成等差數列?若存在,求出所有k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,橢圓:的離心率為y軸于橢圓相交于AB兩點,C、D是橢圓上異于A、B的任意兩點,且直線AC、BD相交于點M,直線AD、BC相交于點N

求橢圓的方程;

求直線MN的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ADE﹣BCF和一個正四棱錐P﹣ABCD組合而成,AD⊥AF,AE=AD=2.
(Ⅰ)證明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱錐P﹣ABCD的高h,使得二面角C﹣AF﹣P的余弦值是

查看答案和解析>>

同步練習冊答案