精英家教網 > 高中數學 > 題目詳情

已知函數,為函數的導函數.
(1)設函數f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數,求函數的單調區(qū)間.

(1),;(2)見解析.

解析試題分析:(1)先對原函數進行求導,易知點A坐標,又由曲線y=f(x)在A點處的切線方程是,可得,解得的值;(2)先寫出的函數解析式,再對函數求導,然后對a分兩種情況討論,列表求單調區(qū)間.
試題解析:(1)∵,∴.        1分
處切線方程為,∴,        3分
. (各1分)                5分
(2)
.        7分
①當時,,                                          



0


-
0
+


極小值

的單調遞增區(qū)間為,單調遞減區(qū)間為.          9分
②當時,令,得                  10分
(。┊,即時,

練習冊系列答案
年級 高中課程 年級 初中課程
高一 高一免費課程推薦! 初一 初一免費課程推薦!
高二 高二免費課程推薦! 初二 初二免費課程推薦!
高三 高三免費課程推薦! 初三 初三免費課程推薦!
相關習題

科目:高中數學 來源: 題型:解答題


(Ⅰ)的圖象關于原點對稱,當時,的極小值為,求的解析式。
(Ⅱ)若,上的單調函數,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線是
(Ⅰ)求,的值;
(Ⅱ)若上單調遞增,求的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中
(1)若是函數的極值點,求實數的值;
(2)若對任意的為自然對數的底數)都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題12分)設函數
(1)求的周期和對稱中心;
(2)求上值域.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數
(1)若,求的單調區(qū)間,
(2)當時,,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

,曲線在點處的切線與直線垂直.
(1)求的值;
(2) 若,恒成立,求的范圍.
(3)求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

若函數的圖象與直線為常數)相切,并且切點的橫坐標依次成等差數列,且公差為
(I)求的值;
(Ⅱ)若點圖象的對稱中心,且,求點A的坐標

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
⑴ 求函數的單調區(qū)間;
⑵ 如果對于任意的,總成立,求實數的取值范圍;
⑶ 是否存在正實數,使得:當時,不等式恒成立?請給出結論并說明理由.

查看答案和解析>>

同步練習冊答案