以橢圓
x2
16
+
y2
9
=1
的頂點為頂點,離心率e=2的雙曲線方程( 。
A.
x2
16
-
y2
48
=1
B.
y2
9
-
x2
27
=1
C.
x2
16
-
y2
48
=1
y2
9
-
x2
27
=1
D.以上都不對
根據(jù)題意,橢圓
x2
16
+
y2
9
=1
的頂點為(4,0)、(-4,0)、(0,3)、(0,-3);
故分兩種情況討論,
①雙曲線的頂點為(4,0)、(-4,0),焦點在x軸上;
即a=4,由e=2,可得c=8,
b2=64-16=48;
此時,雙曲線的方程為
x2
16
-
y2
48
=1
;
②雙曲線的頂點為(0,3)、(0,-3),焦點在y軸上;
即a=3,由e=2,可得c=6,
b2=36-9=27;
此時,雙曲線的方程為
y2
9
-
x2
27
=1
;
綜合可得,雙曲線的方程為
x2
16
-
y2
48
=1
y2
9
-
x2
27
=1
;
故選C
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

以雙曲線-3x2+y2=12的焦點為頂點,頂點為焦點的橢圓的方程是( 。
A、
x2
16
+
y2
12
=1
B、
x2
16
+
y2
4
=1
C、
x2
12
+
y2
16
=1
D、
x2
4
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且橢圓以拋物線y2=16x的焦點為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C,D分別為橢圓的上頂點和右頂點,點P是線段CD上的動點,求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點M,使△F1MF2的面積S=b2(其中a為橢圓的半長軸長,b為橢圓的半短軸長,F(xiàn)1,F(xiàn)2為橢圓的兩個焦點),若存在,求tan∠F1MF2的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P在以F1、F2為焦點的橢圓
x2
16
+
y2
9
=1
上運動,則△F1F2P的重心G的軌跡方程是
9x2
16
+y2=1
(x≠0)
9x2
16
+y2=1
(x≠0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線y2=16x的焦點P為其一個焦點,以雙曲線
x2
16
-
y2
9
=1
的焦點Q為頂點.
(1)求橢圓的標準方程;
(2)已知點A(-1,0),B(1,0),且C、D分別為橢圓的上頂點和右頂點,點M是線段CD上的動點,求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在以O為坐標原點的直角坐標系中,
OA
AB
,點A(4,-3),B點在第一象限且到x軸的距離為5.
(1) 求向量
AB
的坐標及OB所在的直線方程;
(2) 求圓(x-3)2+(y+1)2=10關于直線OB對稱的圓的方程;
(3) 設直線l
AB
為方向向量且過(0,a)點,問是否存在實數(shù)a,使得橢圓
x2
16
+y2=1上有兩個不同的點關于直線l對稱.若不存在,請說明理由; 存在請求出實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案