如圖所示,空間四邊形ABCD中,平面ABD⊥平面BCD,∠BAD=90°,∠BCD=90°,且AB=AD,則AC與平面BCD所成的角為
 
考點:直線與平面所成的角
專題:空間角
分析:首先利用面面垂直轉(zhuǎn)化出線面垂直,進(jìn)一步求出線面的夾角,最后通過解直角三角形求得結(jié)果.
解答: 解:取BD的中點E,連接AE,CE,
由于平面ABD⊥平面BCD,∠BAD=90°,且AB=AD
所以:AE⊥BD
進(jìn)一步得:AE⊥平面BCD
所以:∠ACE就是直線AC與平面BCD的角.
又∠BCD=90°,
所以:CE=
1
2
BD=AE

△AEC為直角三角形.
所以:∠ACE=45°
故答案為:45°
點評:本題考查的知識要點:面面垂直與線面垂直間的轉(zhuǎn)化,直線與平面所成的角.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(
2
,2)在冪函數(shù)f(x)=xα的圖象上,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點A為數(shù)軸上表示-2的動點,當(dāng)點A沿數(shù)軸移動4個單位長度到B點時,點B所表示的有理數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為1的直線L經(jīng)過拋物線y2=2x的焦點,與拋物線相交于A,B兩點,則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐ABC-A1B1C1中,△ABC為等邊三角形,AB=2,AA1=
10
,A1B⊥AC,且A1B=2
3
,D是AC的中點.
(1)求證:A1C=A1A;
(2)求二面角A1-AC-B的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,DC=2,∠PCD=45°,D,E,F(xiàn),G分別為線段PA,PC,PD,BC的中點,現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖2).
(1)求證:AP∥平面EFG;
(2)求三棱椎C-EFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知8張獎券中有一、二等獎各1張,三等獎2張,其余4張無獎,現(xiàn)將這8張獎券隨機(jī)分配給甲、乙、丙、丁四人,每人2張.
(1)求至少有3人獲獎的概率;
(2)若一、二、三等獎的獎金分別為100元、70元、20元,設(shè)甲最終獲得資金X元,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2alnx-x+
1
x
,a≠0,g(x)=-x2-x+2
2
b.
(1)若函數(shù)f(x)在定義域上有極值,求實數(shù)a的取值范圍?
(2)當(dāng)a=
2
時,對?x0∈[1,e],總存在t∈[1,e]使f(x0)<g(t)成立,求實數(shù)b的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x3log2x的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊答案