已知函數(shù)。
(1)求的最小正周期和單調(diào)遞增區(qū)間;
(2)將按向量平移后圖像關(guān)于原點對稱,求當最小時的。
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若數(shù)列 ,
求數(shù)列的通項公式;
(Ⅲ)若數(shù)列滿足,是數(shù)列的前項和,是否存在正實數(shù),使不等式對于一切的恒成立?若存在,請求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
某風景區(qū)有40輛自行車供游客租賃使用,管理這些自行車的費用是每日72元。根據(jù)經(jīng)驗,若每輛自行車的日租金不超過6元,則自行車可以全部租出;若超出6元,則每超過1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費用,用(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費用后的所得)。
(1)求函數(shù)的解析式及其定義域;
(2)試問當每輛自行車的日租金定為多少元時,才能使一日的凈收入最多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù)(、),若,且對任意實數(shù)()不等式0恒成立.
(Ⅰ)求實數(shù)、的值;
(Ⅱ)當[-2,2]時,是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知二次函數(shù),,的最小值為.
⑴ 求函數(shù)的解析式;
⑵ 設(shè),若在上是減函數(shù),求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系:,若不建隔熱層,每年能源消耗費用為8萬元.設(shè)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求的值及的表達式;
(Ⅱ)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
某漁業(yè)公司年初用98萬元購買一艘捕魚船,第一年各種支出費用12萬元,以后每年都增加
4萬元,每年捕魚收益50萬元.
(1)該公司第幾年開始獲利?
(2)若干年后,有兩種處理方案:
①年平均獲利最大時,以26萬元出售該漁船;
②總純收入獲利最大時,以8萬元出售漁船.
問哪種處理方案最合算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)在如圖給定的直角坐標系內(nèi)畫出的圖像;
(2)寫出的單調(diào)遞增區(qū)間及值域;
(3)求不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com