(注:
(1)求;(2)求的取值范圍
(1)(2)
設(shè),,,,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131507543213.gif" style="vertical-align:middle;" />是△的重心,故
,又,,因
共線,所以,即,又
共線,所以,消去,得.
(ⅰ),故
(ⅱ),那么        
,當(dāng)重合時(shí),,當(dāng)位于中點(diǎn)時(shí),
,故,故但因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131507574202.gif" style="vertical-align:middle;" />與不能重合,故
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
如圖6所示,在直角坐標(biāo)平面上的矩形中,,,點(diǎn),滿足,,點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),直線相交于點(diǎn)
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若過點(diǎn)的直線與點(diǎn)的軌跡相交于兩點(diǎn),求的面積的最大值.
圖6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(5)所示,已知設(shè)是直線上的一點(diǎn), (其中為坐標(biāo)原點(diǎn)).
(Ⅰ)求使取最小值時(shí)的點(diǎn)的坐標(biāo)和此時(shí)的余弦值.
(Ⅱ)對于(Ⅰ)中的.若是線段的三等分點(diǎn),且,交于點(diǎn),設(shè)試用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、如圖,為單位向量,夾角為1200

的夾角為450,||=5,用表示。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)點(diǎn)是線段上的一點(diǎn),、的坐標(biāo)分別是
(1)  當(dāng)點(diǎn)是線段的中點(diǎn)時(shí),求點(diǎn)的坐標(biāo);
(2)  當(dāng)點(diǎn)是線段的一個(gè)三等分點(diǎn)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在∠AOBOA邊上取m個(gè)點(diǎn),在OB邊上取n個(gè)點(diǎn)(均除O點(diǎn)外),連同O點(diǎn)共m+n+1個(gè)點(diǎn),現(xiàn)任取其中三個(gè)點(diǎn)為頂點(diǎn)作三角形,可作的三角形有(    )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在邊長為1的正方形ABCD中,E為AB的中點(diǎn),P為以A為圓心,AB為半徑的圓在正方形內(nèi)的圓弧上的任意一點(diǎn),設(shè)向量
AC
DE
AP

(Ⅰ)求點(diǎn)(μ,λ)的軌跡方程(不需限制變量取值范圍);
(Ⅱ)求λ+μ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:空間四邊形中,點(diǎn)分別是的中點(diǎn).設(shè)
(1)用表示向量.
(2)若,且、夾角的余弦值均為,夾角為600,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平行四邊形ABCD中,等于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案