6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù).

分析 (1)由頻率和為1,列出方程求出x的值;
(2)根據(jù)頻率分布直方圖計算眾數(shù)和中位數(shù)的數(shù)值即可.

解答 解:(1)由直方圖的性質(zhì)可得
(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,
解得x=0.0075;
(2)月平均用電量的眾數(shù)是$\frac{220+240}{2}$=230,
∵(0.002+0.0095+0.011)×20=0.45<0.5,
月平均用電量的中位數(shù)在[220,240)內(nèi),
設(shè)中位數(shù)為a,由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5,
可得a=224,
∴月平均用電量的中位數(shù)為224.

點評 本題考查了頻率分布直方圖的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=x2-ax-1在區(qū)間(-$\frac{1}{2}$,$\frac{1}{2}$)上有零點,則實數(shù)a的取值范圍是( 。
A.($\frac{3}{2}$,+∞)B.(-∞,-$\frac{3}{2}$)C.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)D.(-$\frac{3}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,∠ABC=90°,AB=$\sqrt{3}$,BC=1,AA1=3,BD⊥AC,M為線段CC1上一點.
(Ⅰ)求CM的值,使得AM⊥平面A1BD;
(Ⅱ)在(Ⅰ)的條件下,求二面角B-AM-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=$\frac{3x+1}{2-x}$的值域是{y|y≠-3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足,線段PD中點為M,當(dāng)點P在圓上運動時,點M到直線l:x-y+1=0距離最大值為(  )
A.$\frac{{\sqrt{10}+\sqrt{2}}}{2}$B.$\frac{{\sqrt{10}-\sqrt{2}}}{2}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)p:關(guān)于x的方程x2-4x+2a=0在區(qū)間[0,5]上有兩相異實根;q:“至少存在一個實數(shù)x∈[1,2],使不等式x2+2ax+2-a>0成立”.若“¬p∧q”為真命題,參數(shù)a的取值范圍為(-3,0)∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某同學(xué)用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一周期內(nèi)的圖象時,列表并填入部分數(shù)據(jù),如表:
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡相應(yīng)的位置,并求f(x)的解析式;
(2)將函數(shù)f(x)的圖象上每一點的縱坐標(biāo)縮短到原來的$\frac{1}{2}$倍,橫坐標(biāo)不變,得到函數(shù)g(x)的圖象.試求g(x)在區(qū)間[π,$\frac{5π}{2}$]上的最值.
ωx+φ 0 $\frac{π}{2}$ π $\frac{3π}{2}$ 2π
 x  2π   $\frac{13π}{2}$
 f(x) 0 4 -4 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=Asin($\overline{ω}$x+φ)(A>0,$\overline{ω}$>0,0<φ<π)在一個周期內(nèi)的圖象如圖,此函數(shù)的解析式為( 。
A.y=2sin(2x+$\frac{2π}{3}$)B.y=2sin(2x+$\frac{π}{3}$)C.y=2sin($\frac{x}{2}$-$\frac{π}{3}$)D.y=2sin(2x-$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|1≤x≤5},B={x|a<x<a+1},若B⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案