(2011•淄博二模)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*)且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.求數(shù)列{an}、{bn}的通項(xiàng)公式.
分析:(1)要利用恒等式an+1=2Sn+1構(gòu)造出an=2Sn-1+1兩者作差得出an+1=3an,求出數(shù)列{an};
(2)有等差數(shù)列的性質(zhì)求出b2=5,進(jìn)而求出公差和首項(xiàng),即可求出通項(xiàng)公式.
解答:解:(1)當(dāng)n≥2時(shí),由an+1=2Sn+1得an=2Sn-1+1,兩式相減得
an+1-an=2Sn-2Sn-1=2an,整理得
an+1
an
=3,
a2=2S1+1=3,∴
a2
a1
=3滿足上式.                   
∴{an}是以1為首項(xiàng),3為公比的等比數(shù)列.
∴an=3n-1                   
(2)由條件知:b2=5,故(1+b1)(9+b3)=64               
即(6-d)(14+d)=64,解得d=2或d=-10(舍),故b1=3     
∴bn=b1+(n-1)d=2n+1
點(diǎn)評(píng):本題技巧性較強(qiáng),是數(shù)列中的一道難度較高的題,對(duì)答題者基礎(chǔ)知識(shí)與基本技能要求較高,是用來(lái)提高學(xué)生數(shù)列素養(yǎng)的一道好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)已知某程序框圖如圖所示,則執(zhí)行該程序后輸出的結(jié)果是
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為5
2

(1)求此時(shí)橢圓C的方程;
(2)設(shè)斜率為k(k≠0)的直線m與橢圓C相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問(wèn)E、F兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P(0,
3
3
)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)3x+y的最大值為7,最小值為1,則
a+b+c
a
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)在△ABC中,a、b、c分別為角A、B、C的對(duì)邊,若
m
=(sin2
B+C
2
,1),
n
=(cos2A+
7
2
,4),且
m
n

(Ⅰ)求角A;
(Ⅱ)當(dāng)a=
3
,S△ABC=
3
2
時(shí),求邊長(zhǎng)b和角B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)一個(gè)多面體的三視圖及直觀圖如圖所示:
(Ⅰ)求異面直線AB1與DD1所成角的余弦值:
(Ⅱ)試在平面ADD1A1中確定一個(gè)點(diǎn)F,使得FB1⊥平面BCC1B1
(Ⅲ)在(Ⅱ)的條件下,求二面角F-CC1-B的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案