【題目】在四棱錐中,,,平面ABCD,EPD的中點(diǎn),.

1)求四棱錐的體積V;

2)若FPC的中點(diǎn),求證:平面平面AEF;

3)求二面角的大小.

【答案】1;(2)見解析;(3

【解析】

1)直接利用錐體的體積公式計(jì)算得到答案.

2)證明平面PAC,,得到平面PAC,得到證明.

3)取AD的中點(diǎn)M,連接EM,則,過(guò)MQ,連接EQ,則為二面角的平面角,計(jì)算角度得到答案.

1)在中,,,∴,

中,,,∴,

.

.

2)∵平面ABCD,∴,又,

平面PAC,

EF分別為PD、PC中點(diǎn),∴,∴平面PAC,

平面AEF,∴平面平面AEF.

3)取AD的中點(diǎn)M,連接EM,則,∴平面ACD,

過(guò)MQ,連接EQ,則為二面角的平面角.

MAD的中點(diǎn),,

,又

,故.

即二面角的大小為30°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCDHKLE中,底面ABCD是邊長(zhǎng)為3的正方形,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)F在線段AH上,且,BE與底面ABCD所成角為

1)求證:ACBE;

2)求二面角FBED的余弦值;

3)設(shè)點(diǎn)M在線段BD上,且AM//平面BEF,求DM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校在一天上午的5節(jié)課中,安排語(yǔ)文、數(shù)學(xué)、英語(yǔ)三門文化課和音樂(lè)、美術(shù)兩門藝術(shù)課各1節(jié),且相鄰兩節(jié)文化課之間最多安排1節(jié)藝術(shù)課,則不同的排課方法共有________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,討論函數(shù)的單調(diào)性;

(Ⅱ)若方程沒(méi)有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,圓,圓,橢圓C與圓C1、圓C2均相切.

1)求橢圓C的方程;

2)直線l與圓C1相切同時(shí)與橢圓C交于A、B兩點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABBC,∠ACB60°,DAC中點(diǎn),ABD沿BD翻折過(guò)程中,直線AB與直線BC所成的最大角、最小角分別記為α1,β1,直線AD與直線BC所成最大角、最小角分別記為α2,β2,則有(

A.α1α2β1β2B.α1α2,β1β2

C.α1α2,β1β2D.α1α2,β1β2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在19月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.

下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )

A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元

B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)

D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述中錯(cuò)誤的是(

A.消耗1升汽油乙車最多可行駛5千米.

B.以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多.

C.甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油.

D.某城市機(jī)動(dòng)車最高限速80千米/小時(shí),相同條件下,在該市用丙車比用乙車更省油.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知多面體中,平面,,三角形是等邊三角形,且,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案