對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的“滯點(diǎn)”.已知函數(shù),
(1)試問f(x)有無“滯點(diǎn)”?若有,求之,否則說明理由;
(2)已知數(shù)列{an}的各項(xiàng)均為負(fù)數(shù),且滿足,求數(shù)列{an}的通項(xiàng)公式;
(3)已知bn=an·2n,求{bn}的前n項(xiàng)和Tn。
解:(1)由,
令f(x)=x,得,解得x=0或x=2,
即f(x)存在兩個(gè)滯點(diǎn)0和2;
(2)由題意,得
,①
,②
由②-①得
,
,
,即{an}是等差數(shù)列,且d=-1,
當(dāng)n=1時(shí),由,得
。
(3),③
,④
由④-③,得
 。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(08年黃岡中學(xué)一模理) (本小題滿分14分)對(duì)于函數(shù)f(x),若存在,使成立,則稱x0f(x)的不動(dòng)點(diǎn). 如果函數(shù)有且僅有兩個(gè)不動(dòng)點(diǎn)0,2,且

(1)試求函數(shù)f(x)的單調(diào)區(qū)間;

(2)已知各項(xiàng)不為零且不為1的數(shù)列{an}滿足,求證:

(3)設(shè),為數(shù)列{bn}的前n項(xiàng)和,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

       對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn)  已知函數(shù)f(x)=ax2+(b+1)x+(b–1)(a≠0)

(1)若a=1,b=–2時(shí),求f(x)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;

(3)在(2)的條件下,若y=f(x)圖像上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A、B關(guān)于直線y=kx+對(duì)稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0f(x)的不動(dòng)點(diǎn).如果函數(shù)

f(x)=ax2bx+1(a>0)有兩個(gè)相異的不動(dòng)點(diǎn)x1,x2

⑴若x1<1<x2,且f(x)的圖象關(guān)于直線xm對(duì)稱,求證:<m<1;

⑵若|x1|<2且|x1x2|=2,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南師大附中高三第二次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

對(duì)于函數(shù)f(x),若在其定義域內(nèi)存在兩個(gè)實(shí)數(shù)a,b(a<b),使當(dāng)x∈[a,b]時(shí),f(x)的值域也是[a,b],則稱函數(shù)f(x)為“布林函數(shù)”,區(qū)間[a,b]稱為函數(shù)f(x)的“等域區(qū)間”.

(1)布林函數(shù)的等域區(qū)間是         .

(2)若函數(shù)是布林函數(shù),則實(shí)數(shù)k的取值范圍是           .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖南省華容縣高一第一學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題

(本小題滿分6分)對(duì)于函數(shù)f(x),若存在x0ÎR,使f(x0)=x0成立,則稱點(diǎn)(x0,x0)為函數(shù)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+bx-b有不動(dòng)點(diǎn)(1,1)和(-3,-3),求a、b的值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案