設(shè)函數(shù)f(x)=
2x
1+2x
-
1
2
,[x]表示不超過x的最大整數(shù),如[-1.2]=-2,[2.3]=2則函數(shù)y=[f(x)]+[f(-x)]的值域為
( 。
A、{0}
B、{-1,0}
C、{-1,0,1}
D、{-2,0}
分析:化簡函數(shù)f(x)=
2x
1+2x
-
1
2
,對x的正、負、和0分類討論,求出[f(x)]+[f(-x)]的值.
解答:解:f(x)=
2x
1+2x
-
1
2

1-
1
1+2x
-
1
2

=
1
2
-
1
1+2x

當x>0  0≤f(x)<
1
2
[f(x)]=0
當x<0-
1
2
<f(x)<0[f(x)]=-1
當x=0    f(x)=0[f(x)]=0
所以:當x=0    y=[f(x)]+[f(-x)]=0
當x不等于0    y=[f(x)]+[f(-x)]=0-1=-1
所以,y的值域:{0,-1}
故選B.
點評:本題考查函數(shù)的值域,函數(shù)的單調(diào)性及其特點,考查學(xué)生分類討論的思想,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2、設(shè)函數(shù)f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定實數(shù)a(a≠
12
),設(shè)函數(shù)f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導(dǎo)數(shù)f′(x)的圖象為C1,C1關(guān)于直線y=x對稱的圖象記為C2
(Ⅰ)求函數(shù)y=f′(x)的單調(diào)區(qū)間;
(Ⅱ)對于所有整數(shù)a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數(shù)的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
(2x+1)(3x+a)
x
為奇函數(shù),則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
-2x+m2x+n
(m、n為常數(shù),且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數(shù)f(x)不是奇函數(shù);
(Ⅱ)若f(x)是奇函數(shù),求出m、n的值,并判斷此時函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案