定議在上的單調(diào)函數(shù)滿足,且對任意都有
(1)求證:為奇函數(shù);
(2)若對任意恒成立,求實(shí)數(shù)的取值范圍.
(1)詳見解析:(2).
解析試題分析:(1)賦值法求解,再尋找之間的關(guān)系;(2)先研究函數(shù)的單調(diào)性,再利用奇偶性化為,即對任意的恒成立,再轉(zhuǎn)化為二次函數(shù)知識(shí)求解.本題考查了恒成立問題以及化歸與轉(zhuǎn)化思想.
試題解析:(1)證明:①
令,代入①式,得即
令,代入①式,得,又
則有即對任意成立,
所以是奇函數(shù). 4分
(2)解:,即,又在上是單調(diào)函數(shù),
所以在上是增函數(shù).
又由(1)是奇函數(shù).
對任意成立.
令,問題等價(jià)于對任意恒成立. 8分
令其對稱軸.
當(dāng)時(shí),即時(shí),,符合題意;
當(dāng)時(shí),對任意恒成立
解得 12分
綜上所述當(dāng)時(shí),對任意恒成立.
考點(diǎn):1.函數(shù)奇偶性的證明;2.二次函數(shù)恒成立問題;3.化歸與轉(zhuǎn)化思想.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是偶函數(shù).
(1)求的值;
(2)證明:對任意實(shí)數(shù),函數(shù)的圖像與直線最多只有一個(gè)交點(diǎn);
(3)設(shè)若函數(shù)的圖像有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到輛/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)時(shí),車流速度為千米/小時(shí).研究表明:當(dāng)時(shí),車流速度是車流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=0時(shí),若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域?yàn)閰^(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
工廠生產(chǎn)某種產(chǎn)品,次品率與日產(chǎn)量(萬件)間的關(guān)系(為常數(shù),且),已知每生產(chǎn)一件合格產(chǎn)品盈利元,每出現(xiàn)一件次品虧損元.
(1)將日盈利額(萬元)表示為日產(chǎn)量(萬件)的函數(shù);
(2)為使日盈利額最大,日產(chǎn)量應(yīng)為多少萬件?(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中,為常數(shù),已知銷售價(jià)格為4元/千克時(shí),每日可銷售出該商品5千克;銷售價(jià)格為4.5元/千克時(shí),每日可銷售出該商品2.35千克.
(1)求的解析式;
(2)若該商品的成本為2元/千克,試確定銷售價(jià)格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)f(x)滿足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在區(qū)間[-1,1]上,y=f (x)的圖象恒在y=2x+m的圖象上方,試確定實(shí)數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)如果對于任意的,總成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請給出結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場在店慶一周年開展“購物折上折活動(dòng)”:商場內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿500元再減100元.如某商品標(biāo)價(jià)為1500元,則購買該商品的實(shí)際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實(shí)際折扣率.設(shè)某商品標(biāo)價(jià)為元,購買該商品得到的實(shí)際折扣率為.
(Ⅰ)寫出當(dāng)時(shí),關(guān)于的函數(shù)解析式,并求出購買標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(Ⅱ)對于標(biāo)價(jià)在[2500,3500]的商品,顧客購買標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com