(本小題滿分16分)已知F1(-c,0), F2(c,0) (c>0)是橢圓的兩個焦點,O為坐標原點,圓M的方程是
(1)若P是圓M上的任意一點,求證:是定值;
(2)若橢圓經(jīng)過圓上一點Q,且cos∠F1QF2=,求橢圓的離心率;
(3)在(2)的條件下,若|OQ|=,求橢圓的方程.
(1) 3  (Ⅱ)(3)
(1)證明:設P(x,y)是圓上的任意一點,
= =3∴="3   " -5分
(2)解:在△F1QF2中,F(xiàn)1F2=2c,Q在圓上,設|QF2|=x,則|QF1|=3x,橢圓半長軸長為2x,
4c2=x2+9x2-6x2×,5c2=8x2,e2=,e=.----------10分
(3)由(2)知,x=,即|QF2|=,則|QF1|=3

,由于|OQ|=,∴c=2,進一步由e= =得到a2=10,b2=6,所求橢圓方程是.           ------------16分
點評:本題考查橢圓的性質(zhì)、定義、圓的有關性質(zhì)及其運算,解三角形,較難題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓+=1與雙曲線=1(m,n,p,q∈R+)有共同的焦點F1、F2,P是橢圓和雙曲線的一個交點,則|PF1|·|PF2|=      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l的方程為,且直線lx軸交于點M,圓x軸交于兩點(如圖).
(I)過M點的直線交圓于兩點,且圓孤恰為圓周的,求直線的方程;
(II)求以l為準線,中心在原點,且與圓O恰有兩個公共點的橢圓方程;

(III)過M點的圓的切線交(II)中的一個橢圓于兩點,其中兩點在x軸上方,求線段CD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知直線l與橢圓(ab>0)相交于不同兩點AB,,且,以M為焦點,以橢圓的右準線為相應準線的雙曲線與直線l相交于N(4,1). (I)求橢圓的離心率; (II)設雙曲線的離心率為,記,求的解析式,并求其定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在面積為18的△ABC中,AB=5,雙曲線E過點A,


 
且以B、C為焦點,已知

(Ⅰ)建立適當?shù)淖鴺讼,求雙曲線E的方程;
(Ⅱ)是否存在過點D(1,1)的直線l,
使l與雙曲線E交于不同的兩點M、N,且
如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

為橢圓左、右焦點,過橢圓中心任作一條直線與橢圓交于兩點,當四邊形面積最大時,的值等于         .               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線上一點到其焦點的距離為
(I)求的值;
(II)設拋物線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點的垂線交于另一點.若的切線,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設拋物線C1:y2=4mx(m>0)的準線與x軸交于F1,焦點為F2;以F1,F(xiàn)2為焦點,離心率e=
1
2
的橢圓C2與拋物線C1在x軸上方的交點為P,延長PF2交拋物線于點Q,M是拋物線C1上一動點,且M在P與Q之間運動.
(1)當m=1時,求橢圓C2的方程;
(2)當△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系xoy中的一個橢圓,它的中心在原點,左焦點為F(-
3
,0)
,右頂點為D(2,0),設點A(1,
1
2
).
(1)求該橢圓的標準方程;
(2)若P是橢圓上的動點,求線段PA的中點M的軌跡方程;
(3)過原點O的直線交橢圓于B,C兩點,求△ABC面積的最大值,并求此時直線BC的方程.

查看答案和解析>>

同步練習冊答案