在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為數(shù)學(xué)公式為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長(zhǎng).

解:(Ⅰ)∵圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),
配方得(x-2cosα)2+(y-sinα)2=1,
∴圓M的圓心(x,y)的軌跡C的參數(shù)方程為(α為參數(shù)),
變?yōu)?img class='latex' src='http://thumb.1010pic.com/pic5/latex/137312.png' />,y=sinα,
將上兩式分別平方相加得
∴圓心(x,y)的軌跡C為:焦點(diǎn)在x軸上,長(zhǎng)半軸長(zhǎng)是2,短半軸長(zhǎng)是1的橢圓.
(Ⅱ)直線l的參數(shù)方程為為參數(shù)),
令t=0,則x=0,y=1,∴(0,1)在直線l上,并且是圓M的圓心的軌跡橢圓的短軸的上頂點(diǎn),
設(shè)點(diǎn)P(2cosα,sinα)是直線l與橢圓相交的另一個(gè)交點(diǎn),
則弦長(zhǎng)|PQ|的平方|PQ|2=(2cosα-0)2+(sinα-1)2=-3sin2α-2sinα+5
=,
∵-1≤sinα≤1,∴當(dāng)時(shí),上式的最大值為
即弦長(zhǎng)|PQ|的最大值為
分析:(Ⅰ)通過(guò)配方即可得到圓心的參數(shù)方程,再消去參數(shù)即可得到其普通方程.
(Ⅱ)由于直線上的一點(diǎn)P(0,1)也是圓M的圓心的軌跡橢圓的短軸的上頂點(diǎn),據(jù)參數(shù)方程再設(shè)此橢圓上的任意一點(diǎn)的坐標(biāo)(2cosα,sinα),
根據(jù)兩點(diǎn)間的距離公式即可得到弦長(zhǎng)|PQ|是關(guān)于sinα的二次函數(shù),利用其單調(diào)性即可求出最大值.
點(diǎn)評(píng):本題考查了曲線的參數(shù)方程化為普通方程及其參數(shù)的意義,正確利用二次函數(shù)的單調(diào)性求最值和理解參數(shù)得意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問(wèn):是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案