【題目】在△ABC中,設(shè)邊a,b,c所對(duì)的角分別為A,B,C,且a>c.已知△ABC的面積為 , ,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B﹣C)的值.
【答案】解:(Ⅰ)由 ,得sinAcosB﹣cosAsinB+sin(A+B)=
即2sinAcosB= ,∵sinA≠0,∴ .sinB=
由余弦定理得:
…①
又∵s△ABC= ,∴ac=6…②
由①②解得
∵a>c,∴a=3,c=2
(Ⅱ)由余弦定理得cosC= ,則sinC= .
∴sin(B﹣C)=sinBcosC﹣cosBsinC= .
【解析】(1)由 ,得sinAcosB﹣cosAsinB+sin(A+B)= ,即.sinB= 由余弦定理得: …①,又s△ABC= ,∴ac=6…②,由①②解得a,c
(Ⅱ)由余弦定理得cosC= ,則sinC= .即可得sin(B﹣C)=sinBcosC﹣cosBsinC的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是( )
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=9,且2a1 , a3﹣1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =2n﹣1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx+x2+(a﹣1)x﹣a,(a∈R),當(dāng)x≥1時(shí),f(x)≥0恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)若正實(shí)數(shù)x1、x2(x1≠x2)滿足f(x1)+f(x2)=0,證明:x1+x2>2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩名籃球運(yùn)動(dòng)員的季后賽10場(chǎng)得分可用莖葉圖表示如圖:
(1)某同學(xué)不小心把莖葉圖中的一個(gè)數(shù)字弄污了,看不清了,在如圖所示的莖葉圖中用m表示,若甲運(yùn)動(dòng)員成績的中位數(shù)是33,求m的值;
(2)估計(jì)乙運(yùn)動(dòng)員在這次季后賽比賽中得分落在[20,40]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線 (t為參數(shù)),以原點(diǎn)為極點(diǎn),以x正半軸為極軸,建立極坐標(biāo)系,曲線 .
(Ⅰ)寫出曲線C1的普通方程,曲線C2的直角坐標(biāo)方程;
(Ⅱ)若M(1,0),且曲線C1與曲線C2交于兩個(gè)不同的點(diǎn)A,B,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠A= ,O為平面內(nèi)一點(diǎn).且| |,M為劣弧 上一動(dòng)點(diǎn),且 .則p+q的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,若將f(x)的圖象向左平移 個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,則φ=( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com