【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高.自2018年10月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:

(1)假如小李某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,y表示應(yīng)納的稅,試寫出調(diào)整前后y關(guān)于的函數(shù)表達(dá)式;

(2)某稅務(wù)部門在小李所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:

先從收入在[3000,5000)及[5000,7000)的人群中按分層抽樣抽取7人,再?gòu)闹羞x4人作為新納稅法知識(shí)宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;

(3)小李該月的工資、薪金等稅前收入為7500元時(shí),請(qǐng)你幫小李算一下調(diào)整后小李的實(shí)際收入比調(diào)整前增加了多少?

【答案】(1)見解析;(2);(3)見解析

【解析】

(1)依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法得到調(diào)整前后y關(guān)于的函數(shù)表達(dá)式;

(2)利用分層抽樣明確各層所占人數(shù),利用古典概型公式計(jì)算即可;

(3)按調(diào)整前起征點(diǎn)應(yīng)納個(gè)稅為295元,調(diào)整后起征點(diǎn)應(yīng)納個(gè)稅為75元,從而作出判斷.

(1)調(diào)整前y關(guān)于x的表達(dá)式為

.

調(diào)整后y關(guān)于x的表達(dá)式為

(2)由頻數(shù)分布表可知從[3000,5000)及[5000,7000)的人群中按分層抽樣抽取7人,其中[3000,5000)中占3人,分別記為AB,C,[5000,7000)中占4人,分別記為1,2,3,4,再?gòu)倪@7人中選2人的所有組合有:AB,ACA1,A2A3,A4BC,B1,B2,B3B4,C1C2,C3,C4,12,13,14,23,24,34,共21種情況,

其中不在同一收入人群的有:Al,A2,A3,A4B1,B2,B3,B4C1,C2,C3,C4,共12種,所以所求概率為.

(3)由于小李的工資、薪金等收入為7500元,

按調(diào)整前起征點(diǎn)應(yīng)納個(gè)稅為1500×3%+2500×10%=295元;

按調(diào)整后起征點(diǎn)應(yīng)納個(gè)稅為2500×3%=75元,

比較兩個(gè)納稅方案可知,按調(diào)整后起征點(diǎn)應(yīng)納個(gè)稅少交220元,

即個(gè)人的實(shí)際收入增加了220元,所以小李的實(shí)際收入增加了220元。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一組織一次數(shù)學(xué)競(jìng)賽,選取50名學(xué)生成績(jī)(百分制,均為整數(shù)),根據(jù)這50名學(xué)生的成績(jī),繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中a的值;

2)估計(jì)選取的50名學(xué)生在這次數(shù)學(xué)競(jìng)賽中的平均成績(jī);

3)用分層抽樣的方法在分?jǐn)?shù)段為的學(xué)生成績(jī)中抽取一個(gè)樣本容量為5的樣本,

再隨機(jī)抽取2人的成績(jī),求恰有一人成績(jī)?cè)诜謹(jǐn)?shù)段內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)是拋物線的焦點(diǎn),點(diǎn),分別在拋物線和圓的實(shí)線部分上運(yùn)動(dòng),且總是平行于軸,則周長(zhǎng)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)10元;重量超過的包裹,除收費(fèi)10元之外,超過的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?

3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過,求他支付的快遞費(fèi)為45元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩隊(duì)參加聽歌猜歌名游戲,每隊(duì).隨機(jī)播放一首歌曲, 參賽者開始搶答,每人只有一次搶答機(jī)會(huì),答對(duì)者為本隊(duì)贏得一分,答錯(cuò)得零分, 假設(shè)甲隊(duì)中每人答對(duì)的概率均為,乙隊(duì)中人答對(duì)的概率分別為,且各人回答正確與否相互之間沒有影響.

(1)若比賽前隨機(jī)從兩隊(duì)的個(gè)選手中抽取兩名選手進(jìn)行示范,求抽到的兩名選手在同一個(gè)隊(duì)的概率;

(2)表示甲隊(duì)的總得分,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(3)求兩隊(duì)得分之和大于4的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點(diǎn)F(1,0),定直線,動(dòng)點(diǎn)M到點(diǎn)F的距離與到直線l的距離相等.

(1)求動(dòng)點(diǎn)M的軌跡方程;

(2)設(shè)點(diǎn),過點(diǎn)F作一條斜率大于0的直線交軌跡M于A,B兩點(diǎn),分別連接PA,PB,若直線PA與直線PB不關(guān)于x軸對(duì)稱,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱側(cè)棱和底面垂直的棱柱中,平面側(cè)面,,線段AC、上分別有一點(diǎn)E、F且滿足,

求證:;

求點(diǎn)E到直線的距離;

求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為支援邊遠(yuǎn)地區(qū)教育事業(yè)的發(fā)展,現(xiàn)有5名師范大學(xué)畢業(yè)生主動(dòng)要求赴西部某地區(qū)三所不同的學(xué)校去支教,每個(gè)學(xué)校至少去1人,甲、乙不能安排在同一所學(xué)校,則不同的安排方法有( )

A.180B.150C.90D.114

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)在矩形ABCD中,AB=5,AD=2,點(diǎn)E在線段AB上,且BE=1,將△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCDE,如圖(2).

(1)求證:CE⊥平面A1DE

(2)求證:A1DA1C;

(3)線段A1C上是否存在一點(diǎn)F,使得BF∥平面A1DE?說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案